@pandas

动态 列表
@deephub

12 種 Pandas 測試技巧,讓數據處理少踩坑

12 種 Pandas 測試技巧,讓數據處理少踩坑 12 種測試實踐 —— fixtures、schemas、property-based tests、snapshots、performance guards —— 每週能省不少排查問題的時間 Pandas 的 bug 有個特點,就是不會在控制枱裏大喊大叫,而是悄悄藏在 dtype 轉換、索引操作、時區處理的某個角落,或者那種跑十萬次才能復現一次

deephub 头像

@deephub

昵称 deephub

@bianchengdandan

推薦七個Python效率工具!

為了提高效率,我們在平時工作中常會用到一些Python的效率工具,Python作為比較老的編程語言,它可以實現日常工作的各種自動化。為了更便利的開發項目,這裏給大家推薦幾個Python的效率工具。 1、Pandas-用於數據分析 Pandas是一個強大的分析結構化數據的工具集;它的使用基礎是Numpy(提供高性能的矩陣運算);用於數據挖掘和數據分析,同時也提供數據清洗功能。 #1、安裝包 $p

bianchengdandan 头像

@bianchengdandan

昵称 Python技術大本營

@deephub

Pandas 缺失值最佳實踐:用 pd.NA 解決缺失值的老大難問題

做數據處理的都知道,一個 NaN 就能讓整個數據清洗流程崩盤。過濾條件失效、join 結果錯亂、列類型莫名其妙變成 object——這些坑踩過的人應該都有所體會。而Pandas 引入的可空數據類型(nullable dtypes)就是來幫我們填這個坑的。 現在整數列終於能表示缺失了,布爾列不會再退化成 object,字符串列的行為也更可控,這樣我們代碼的邏輯可以變得更清晰。 NumPy 整數類型

deephub 头像

@deephub

昵称 deephub