將平台升級為雲原生架構,支持多雲部署和智能運維能力。

1. 雲原生架構重構

# kubernetes_manager.py
from kubernetes import client, config
from typing import Dict, List
import yaml
import asyncio

class KubernetesManager:
    def __init__(self):
        try:
            config.load_incluster_config()  # 在集羣內運行
        except:
            config.load_kube_config()  # 本地開發
        
        self.apps_v1 = client.AppsV1Api()
        self.core_v1 = client.CoreV1Api()
        self.networking_v1 = client.NetworkingV1Api()
    
    async def deploy_application(self, app_spec: Dict) -> str:
        """部署應用到Kubernetes"""
        namespace = app_spec.get("namespace", "default")
        app_name = app_spec["name"]
        
        # 創建命名空間
        await self._create_namespace(namespace)
        
        # 部署配置映射
        await self._create_config_map(app_spec, namespace)
        
        # 部署Secret
        await self._create_secrets(app_spec, namespace)
        
        # 部署Deployment
        deployment = self._generate_deployment(app_spec)
        await self.apps_v1.create_namespaced_deployment(
            namespace=namespace,
            body=deployment
        )
        
        # 部署Service
        service = self._generate_service(app_spec)
        await self.core_v1.create_namespaced_service(
            namespace=namespace,
            body=service
        )
        
        # 部署Ingress(如果需要)
        if app_spec.get("ingress"):
            ingress = self._generate_ingress(app_spec)
            await self.networking_v1.create_namespaced_ingress(
                namespace=namespace,
                body=ingress
            )
        
        return f"{app_name}.{namespace}"
    
    def _generate_deployment(self, app_spec: Dict) -> Dict:
        """生成Kubernetes Deployment配置"""
        return {
            "apiVersion": "apps/v1",
            "kind": "Deployment",
            "metadata": {
                "name": app_spec["name"],
                "labels": {"app": app_spec["name"]}
            },
            "spec": {
                "replicas": app_spec.get("replicas", 2),
                "selector": {
                    "matchLabels": {"app": app_spec["name"]}
                },
                "template": {
                    "metadata": {
                        "labels": {"app": app_spec["name"]}
                    },
                    "spec": {
                        "containers": [{
                            "name": app_spec["name"],
                            "image": app_spec["image"],
                            "ports": [{
                                "containerPort": app_spec.get("port", 5000)
                            }],
                            "env": self._generate_env_vars(app_spec),
                            "resources": {
                                "requests": {
                                    "cpu": "100m",
                                    "memory": "128Mi"
                                },
                                "limits": {
                                    "cpu": "500m", 
                                    "memory": "512Mi"
                                }
                            },
                            "livenessProbe": {
                                "httpGet": {
                                    "path": "/health",
                                    "port": app_spec.get("port", 5000)
                                },
                                "initialDelaySeconds": 30,
                                "periodSeconds": 10
                            }
                        }]
                    }
                }
            }
        }

class MultiCloudManager:
    """多雲管理"""
    
    def __init__(self):
        self.cloud_providers = {
            "aws": AWSCloudManager(),
            "azure": AzureCloudManager(),
            "gcp": GCPCloudManager()
        }
    
    async def deploy_to_cloud(self, app_spec: Dict, cloud_provider: str) -> Dict:
        """部署應用到指定雲平台"""
        provider = self.cloud_providers[cloud_provider]
        
        # 創建雲資源
        resources = await provider.create_infrastructure(app_spec)
        
        # 部署應用到Kubernetes
        k8s_manager = KubernetesManager()
        endpoint = await k8s_manager.deploy_application(app_spec)
        
        return {
            "cloud_provider": cloud_provider,
            "resources_created": resources,
            "application_endpoint": endpoint,
            "status": "deployed"
        }
    
    async def auto_scale_application(self, app_name: str, metrics: Dict):
        """基於指標自動擴縮容"""
        # 分析指標決定擴縮容策略
        scaling_decision = await self._analyze_scaling_needs(metrics)
        
        if scaling_decision["action"] == "scale_up":
            await self._scale_application(app_name, scaling_decision["replicas"])
        elif scaling_decision["action"] == "scale_down":
            await self._scale_application(app_name, scaling_decision["replicas"])

# 使用示例
k8s_manager = KubernetesManager()
cloud_manager = MultiCloudManager()

# 部署應用到AWS
app_spec = {
    "name": "employee-management",
    "image": "my-registry/employee-app:latest",
    "port": 5000,
    "replicas": 3,
    "ingress": True,
    "env_vars": {
        "DATABASE_URL": "postgresql://...",
        "REDIS_URL": "redis://..."
    }
}

result = await cloud_manager.deploy_to_cloud(app_spec, "aws")
print(f"應用已部署: {result['application_endpoint']}")

2. 智能運維與監控

# ai_ops.py
import prometheus_client
from prometheus_client import Counter, Histogram, Gauge
import time
from typing import Dict, List
import asyncio

class AIOpsMonitor:
    def __init__(self):
        # Prometheus指標
        self.request_count = Counter('http_requests_total', 'Total HTTP requests', ['method', 'endpoint', 'status'])
        self.request_duration = Histogram('http_request_duration_seconds', 'HTTP request duration')
        self.error_count = Counter('http_errors_total', 'Total HTTP errors', ['type'])
        self.system_metrics = Gauge('system_metrics', 'System metrics', ['metric_name'])
        
        # AI運維模型
        self.anomaly_detector = AnomalyDetector()
        self.incident_predictor = IncidentPredictor()
    
    async def monitor_application(self, app_name: str, metrics_stream):
        """監控應用性能"""
        async for metrics in metrics_stream:
            # 記錄指標
            self._record_metrics(app_name, metrics)
            
            # 異常檢測
            anomalies = await self.anomaly_detector.detect(metrics)
            if anomalies:
                await self._handle_anomalies(app_name, anomalies)
            
            # 事件預測
            predictions = await self.incident_predictor.predict(metrics)
            if predictions.get("incident_risk") > 0.8:
                await self._prevent_incident(app_name, predictions)
    
    async def auto_remediate_issues(self, issue: Dict):
        """自動修復問題"""
        issue_type = issue["type"]
        
        if issue_type == "high_memory_usage":
            await self._handle_memory_issue(issue)
        elif issue_type == "high_cpu_usage":
            await self._handle_cpu_issue(issue)
        elif issue_type == "network_latency":
            await self._handle_network_issue(issue)
        elif issue_type == "database_connection":
            await self._handle_database_issue(issue)

class AnomalyDetector:
    """AI異常檢測"""
    
    async def detect(self, metrics: Dict) -> List[Dict]:
        """檢測指標異常"""
        anomalies = []
        
        # CPU使用率異常
        if metrics.get("cpu_usage", 0) > 80:  # 閾值
            anomalies.append({
                "type": "high_cpu_usage",
                "metric": "cpu_usage",
                "value": metrics["cpu_usage"],
                "severity": "high"
            })
        
        # 內存使用率異常
        if metrics.get("memory_usage", 0) > 85:
            anomalies.append({
                "type": "high_memory_usage", 
                "metric": "memory_usage",
                "value": metrics["memory_usage"],
                "severity": "high"
            })
        
        # 響應時間異常
        if metrics.get("response_time_p95", 0) > 1000:  # 1秒
            anomalies.append({
                "type": "high_response_time",
                "metric": "response_time_p95",
                "value": metrics["response_time_p95"],
                "severity": "medium"
            })
        
        return anomalies

class IncidentPredictor:
    """事件預測"""
    
    async def predict(self, metrics: Dict) -> Dict:
        """預測潛在事件"""
        risk_score = 0.0
        predictions = []
        
        # 基於趨勢預測
        if metrics.get("memory_growth_rate", 0) > 10:  # 內存增長率
            risk_score += 0.3
            predictions.append("內存使用快速增長,可能即將耗盡")
        
        if metrics.get("error_rate", 0) > 5:  # 錯誤率
            risk_score += 0.4
            predictions.append("錯誤率上升,可能出現服務中斷")
        
        if metrics.get("connection_pool_usage", 0) > 90:
            risk_score += 0.3
            predictions.append("數據庫連接池即將耗盡")
        
        return {
            "incident_risk": min(risk_score, 1.0),
            "predictions": predictions,
            "suggested_actions": self._generate_actions(risk_score, predictions)
        }

3. GitOps工作流

# gitops_controller.py
import git
import yaml
import asyncio
from typing import Dict
from pathlib import Path

class GitOpsController:
    def __init__(self, repo_url: str, workdir: str = "/tmp/gitops"):
        self.repo_url = repo_url
        self.workdir = Path(workdir)
        self.repo = None
        
    async def clone_or_pull_repo(self):
        """克隆或拉取Git倉庫"""
        if not self.workdir.exists():
            self.workdir.mkdir(parents=True)
            self.repo = git.Repo.clone_from(self.repo_url, self.workdir)
        else:
            self.repo = git.Repo(self.workdir)
            self.repo.remotes.origin.pull()
    
    async def watch_for_changes(self):
        """監聽Git倉庫變化"""
        while True:
            try:
                # 檢查是否有新提交
                current_commit = self.repo.head.commit.hexsha
                self.repo.remotes.origin.pull()
                
                if current_commit != self.repo.head.commit.hexsha:
                    await self._handle_config_changes()
                
                await asyncio.sleep(30)  # 每30秒檢查一次
                
            except Exception as e:
                print(f"GitOps監聽錯誤: {e}")
                await asyncio.sleep(60)
    
    async def _handle_config_changes(self):
        """處理配置變化"""
        # 掃描Kubernetes配置文件
        k8s_files = list(self.workdir.glob("**/*.yaml")) + list(self.workdir.glob("**/*.yml"))
        
        for file_path in k8s_files:
            with open(file_path, 'r') as f:
                config = yaml.safe_load(f)
                
                if config.get("kind") == "Application":
                    await self._deploy_application(config)
    
    async def _deploy_application(self, app_config: Dict):
        """部署應用配置"""
        k8s_manager = KubernetesManager()
        
        try:
            # 應用Kubernetes配置
            await k8s_manager.apply_manifest(app_config)
            print(f"應用 {app_config['metadata']['name']} 部署成功")
            
            # 提交部署狀態
            await self._commit_deployment_status(app_config, "success")
            
        except Exception as e:
            print(f"應用部署失敗: {e}")
            await self._commit_deployment_status(app_config, "failed", str(e))

class ApplicationSetManager:
    """管理應用集合"""
    
    def __init__(self):
        self.gitops_controller = GitOpsController("https://github.com/company/gitops-repo.git")
    
    async def deploy_application_set(self, environment: str, apps: List[Dict]):
        """部署應用集合到指定環境"""
        # 生成環境特定的配置
        env_configs = await self._generate_environment_configs(environment, apps)
        
        # 提交到Git倉庫
        await self._commit_to_gitops(env_configs, f"Deploy to {environment}")
        
        # GitOps會自動同步部署

# 使用示例
gitops = GitOpsController("https://github.com/my-org/gitops-repo.git")
await gitops.clone_or_pull_repo()
asyncio.create_task(gitops.watch_for_changes())

4. 服務網格集成

# service_mesh.py
from typing import Dict, List
import aiohttp
import json

class ServiceMeshManager:
    def __init__(self, mesh_type: str = "istio"):
        self.mesh_type = mesh_type
        self.base_url = self._get_control_plane_url()
    
    async def configure_traffic_routing(self, service_name: str, rules: Dict):
        """配置流量路由規則"""
        if self.mesh_type == "istio":
            await self._configure_istio_virtual_service(service_name, rules)
        elif self.mesh_type == "linkerd":
            await self._configure_linkerd_service_profile(service_name, rules)
    
    async def setup_canary_release(self, service_name: str, 
                                 canary_config: Dict):
        """設置金絲雀發佈"""
        virtual_service = {
            "apiVersion": "networking.istio.io/v1alpha3",
            "kind": "VirtualService",
            "metadata": {"name": service_name},
            "spec": {
                "hosts": [service_name],
                "http": [{
                    "route": [
                        {
                            "destination": {
                                "host": service_name,
                                "subset": "stable"
                            },
                            "weight": canary_config.get("stable_weight", 90)
                        },
                        {
                            "destination": {
                                "host": service_name, 
                                "subset": "canary"
                            },
                            "weight": canary_config.get("canary_weight", 10)
                        }
                    ]
                }]
            }
        }
        
        await self._apply_istio_config(virtual_service)
    
    async def configure_resilience(self, service_name: str, policies: Dict):
        """配置彈性策略"""
        destination_rule = {
            "apiVersion": "networking.istio.io/v1alpha3",
            "kind": "DestinationRule", 
            "metadata": {"name": service_name},
            "spec": {
                "host": service_name,
                "trafficPolicy": {
                    "outlierDetection": {
                        "consecutiveErrors": policies.get("max_errors", 5),
                        "interval": f"{policies.get('interval_seconds', 10)}s",
                        "baseEjectionTime": f"{policies.get('ejection_time', 30)}s",
                        "maxEjectionPercent": policies.get("max_ejection_percent", 10)
                    },
                    "connectionPool": {
                        "tcp": {
                            "maxConnections": policies.get("max_connections", 100)
                        },
                        "http": {
                            "http1MaxPendingRequests": policies.get("max_pending_requests", 50),
                            "maxRequestsPerConnection": policies.get("max_requests_per_conn", 10)
                        }
                    }
                }
            }
        }
        
        await self._apply_istio_config(destination_rule)

class DistributedTracing:
    """分佈式追蹤"""
    
    def __init__(self):
        self.tracing_backend = "jaeger"  # 或 zipkin, tempo
    
    async def setup_tracing(self, service_name: str, sampling_rate: float = 0.1):
        """設置分佈式追蹤"""
        tracing_config = {
            "apiVersion": "v1",
            "kind": "ConfigMap",
            "metadata": {
                "name": f"{service_name}-tracing",
                "labels": {"app": service_name}
            },
            "data": {
                "tracing.json": json.dumps({
                    "sampler": {
                        "type": "probabilistic",
                        "param": sampling_rate
                    },
                    "reporter": {
                        "localAgentHostPort": "jaeger-agent:6831"
                    }
                })
            }
        }
        
        await self._apply_config(tracing_config)

5. 成本優化器

# cost_optimizer.py
from typing import Dict, List
from datetime import datetime, timedelta
import asyncio

class CostOptimizer:
    def __init__(self):
        self.cloud_cost_apis = {
            "aws": AWSCostExplorer(),
            "azure": AzureCostManagement(), 
            "gcp": GCBCostAnalysis()
        }
    
    async def analyze_cost_optimization(self, cluster_name: str) -> Dict:
        """分析成本優化機會"""
        cost_data = await self._get_cluster_costs(cluster_name)
        resource_usage = await self._get_resource_usage(cluster_name)
        
        recommendations = []
        
        # 識別空閒資源
        idle_resources = await self._identify_idle_resources(resource_usage)
        if idle_resources:
            recommendations.append({
                "type": "idle_resources",
                "resources": idle_resources,
                "estimated_savings": await self._calculate_idle_savings(idle_resources),
                "action": "scale_down_or_delete"
            })
        
        # 識別過度配置
        over_provisioned = await self._identify_over_provisioned(resource_usage)
        if over_provisioned:
            recommendations.append({
                "type": "over_provisioned",
                "resources": over_provisioned,
                "estimated_savings": await self._calculate_over_provision_savings(over_provisioned),
                "action": "right_size_resources"
            })
        
        # 識別可用的節省計劃
        savings_plans = await self._identify_savings_plans(cost_data)
        if savings_plans:
            recommendations.append({
                "type": "savings_plans",
                "plans": savings_plans,
                "estimated_savings": await self._calculate_plan_savings(savings_plans),
                "action": "purchase_savings_plan"
            })
        
        return {
            "total_monthly_cost": cost_data.get("total_cost", 0),
            "optimization_opportunities": recommendations,
            "potential_savings": sum(rec["estimated_savings"] for rec in recommendations)
        }
    
    async def auto_apply_optimizations(self, recommendations: List[Dict]):
        """自動應用優化建議"""
        for recommendation in recommendations:
            if recommendation["type"] == "idle_resources":
                await self._scale_down_resources(recommendation["resources"])
            elif recommendation["type"] == "over_provisioned":
                await self._right_size_resources(recommendation["resources"])

class SpotInstanceManager:
    """Spot實例管理"""
    
    async def migrate_to_spot(self, workload_type: str, 
                            interruption_tolerance: str) -> Dict:
        """遷移到Spot實例"""
        suitable_instances = await self._find_suitable_spot_instances(workload_type)
        
        migration_plan = {
            "current_instances": await self._get_current_instances(),
            "spot_instances": suitable_instances,
            "estimated_savings": await self._calculate_spot_savings(suitable_instances),
            "migration_strategy": self._determine_migration_strategy(interruption_tolerance),
            "rollback_plan": await self._create_rollback_plan()
        }
        
        return migration_plan

這個雲原生版AI低代碼平台提供:

  1. Kubernetes原生部署 - 容器化、自動擴縮容
  2. 多雲支持 - AWS、Azure、GCP統一管理
  3. 智能運維 - AI驅動的監控和自動修復
  4. GitOps工作流 - 聲明式配置、自動同步
  5. 服務網格 - 流量管理、安全、可觀測性
  6. 成本優化 - 自動識別節省機會

實現企業級的雲原生應用管理和運維。