收藏 / 列表

mob64ca12d42833 - vscode copilot插件 自動生成註釋

在當今的編程世界中,自動化和智能化已經成為了不可逆轉的趨勢。尤其是像“vscode copilot插件”這樣的工具,它不僅能提高我們的編碼效率,還能在很大程度上輔助生成代碼註釋。本文將詳細探討如何利用vscode copilot插件實現自動生成註釋,並給出了一些實用的建議。 背景定位 隨着編程語言的豐富和開發環境的不斷演進,編程已不再是單純的技術活動。我們需要一個更高層次的工具來

code , 編程語言 , aigc , 開發者

mb68738fa1c4e31 - ? TRAE SOLO 3.0 實戰速通指南:在編程馬拉松中打造高分產品的五步策略?

🏆 TRAE SOLO 3.0 實戰速通指南:在編程馬拉松中打造高分產品的五步策略 🎯 引言:黑客馬拉松的評審維度 大家好,我是圍巾哥蕭塵,昨天參與了武漢 TRAE 黑客馬拉松的評審工作,本次活動有 80 多人蔘與,共產生了 40 多個產品,其中 20 個產品入圍了路演階段。 作為評審,我們主要從以下三個關鍵維度來評估作品的質量和潛力:

app , 功能結構 , AI寫作 , aigc

mob649e8167c4a3 - ollama怎麼查詢是不是用的GPU

ollama怎麼查詢是不是用的GPU 在深度學習和人工智能領域,使用GPU來加速計算的重要性不言而喻。在使用“ollama”時,瞭解當前系統是否利用了GPU資源,對於提升模型加載和推理速度至關重要。本文將詳細探討如何查詢“ollama”是否使用了GPU,以幫助開發者優化計算資源和提高工作效率。 問題背景 在機器學習和深度學習的日常工作中,GPU是極為重要的,並且能顯著提高模型

加載 , aigc , 深度學習 , Python

mob64ca12d1a59e - idea copilot切換用户

在使用 IntelliJ IDEA Copilot 的過程中,用户之間的切換可能會遭遇一些問題。隨着業務需求的增加,協作開發的方式也逐漸顯現出更高的複雜性,特別是當需要頻繁切換用户時,可能會導致環境配置的錯亂、參數失效等問題。本文將逐步分析這一問題的背景、演進歷程、架構設計、性能攻堅以及擴展應用,為開發者同行提供參考和解決思路。 背景定位 在現代軟件開發過程中,團隊成員往往需要使

壓測 , 架構設計 , aigc , 環境配置

mob649e8166179a - ollama 跑雙顯卡的原因不跑GPU

ollama 跑雙顯卡的原因不跑GPU 在當今的深度學習和人工智能應用中,使用雙顯卡的配置可以極大地提升模型訓練和推理的性能。然而,許多用户在使用 ollama 時,發現儘管配置了雙顯卡,卻仍然無法有效利用 GPU。本文將深入探討這個問題的背後原因,並提供解決方案。 背景定位 適用場景分析,人們希望在高性能計算任務中充分利用硬件資源,尤其是在進行深度學習模型訓練時,雙顯卡的配

性能需求 , aigc , 深度學習 , CUDA

mob64ca12dc88a3 - ollama linux下載模型位置

ollama linux下載模型位置的描述 在現代機器學習和人工智能發展的背景下,模型的下載和使用變得愈發重要。對於使用ollama的用户,確保Linux環境中的模型下載位置正確配置是實施高效工作流程的關鍵。本文將詳細記錄如何解決“ollama linux下載模型位置”的問題,以便在實際應用中提供充分支持。 環境準備 在正式進行模型下載配置之前,首先需要確保Linux環境配置

硬件資源 , bash , aigc , ci

mob64ca12f062df - ollama模型下載換路徑

在一次項目中,我遇到了一些關於“ollama模型下載換路徑”的問題。為了分享我解決這個問題的過程,我特別記錄下了這整個過程的細節,希望能為他人提供參考。下面將詳細介紹解決這一問題的演示和實操步驟。 環境預檢 在切換模型下載路徑之前,我首先進行了環境的預檢,包括了硬件配置和依賴版本的對比。 我使用了下圖展示了我的硬件拓撲: mindmap root 硬件拓撲

依賴包 , bash , aigc , 安裝過程

mob64ca12ebf2cc - OllamaLLM函數調用過程中的url參數

在本文中,我們將深入探討“OllamaLLM函數調用過程中的url參數”問題的解決方案,幫助你更好地理解和應用這一挑戰。以下是相關的各個部分,將涵蓋整個過程。 環境準備 為了讓你的項目成功運行,首先必須確保你具備相應的環境。下面是一些依賴安裝指南。 依賴名稱 版本 備註 Ollam

函數調用 , 配置文件 , aigc , JAVA

網易雲信IM - 網易雲信與四川央國企共探產業升級新生態

近日,網易數智攜手川酒集團、虹信軟件共同赴成都蜀智雲鏈,舉辦了主題為“產業數字化轉型與採購場景技術升級”的交流會。此次活動不僅圍繞數字化轉型實踐、核心技術賦能以及生態協同發展展開深度對話,還特別安排了對蜀智雲鏈參與建設的分散評標場地的現場參觀,讓與會嘉賓實地感受該系統在分散評標招採場景中的落地效果。虹信軟件企業業務中心總經理袁仁東、川酒集團信息化部部長楊益、成都蜀智雲鏈科技總經理

音視頻 , 會議組件 , 數字化 , aigc , bard , 遠程異地評標 , 遠程異地評標會議組件

mob649e815574e6 - copilot用户切換

在使用Copilot的過程中,我遇到了一個棘手的“用户切換”問題。這個問題讓我的工作效率受到了嚴重影響,導致我在項目開發中反覆遭遇類似的困擾。因此,我決定記錄下這個問題的詳細過程,以便未來能夠更好地解決。以下是我對這一問題的分析與解決過程。 問題背景 在我的日常開發中,經常需要多次切換不同的用户身份以進行權限測試。比如,我在一次大型應用的開發中,需要切換至管理員、普通用户及訪客用

User , System , aigc , 解決方案

mob64ca12e51ecb - langchain4j spring boot集成

在這篇博文中,我將詳細介紹如何將 LangChain4j 集成到 Spring Boot 項目中,以便快速構建基於語言模型的應用。我們會從環境準備開始,一步一步講解集成過程、配置細節、實戰應用及常見問題解決方法,最後給出性能優化的建議。 環境準備 首先,確保你的開發環境中安裝了 Java 以及 Maven,建議使用 JDK 11 及以上版本。以下是所需的依賴和工具: | 組件

性能優化 , API , xml , aigc

yzy121403725 - kubeflow 大規模 ML 訓練

Kubeflow 的一個主要設計目標就是簡化和標準化在 Kubernetes 上進行大規模 ML 訓練的過程。它提供了一系列工具和組件,讓數據科學家和工程師能夠輕鬆地啓動、管理和監控分佈式訓練任務,而無需關心底層的 Kubernetes 集羣調度細節。  1. 核心組件:Kubeflow Training Operators Kubeflow 不直接調度訓練任

大規模ML訓練 , aigc , llama , Kubeflow