收藏 / 列表

mob64ca12d42833 - 如何修改llama模型的每層的結構

如何修改llama模型的每層的結構 在深度學習領域,llama模型由於其出色的性能被廣泛應用於自然語言處理(NLP)任務。然而,隨着具體業務需求的不斷變化和技術的持續發展,我發現需要對llama模型的每層結構進行修改以提升模型的適應性和效果。本文將詳細記錄這個過程,包括相關的背景信息、問題現象、深層次的根因分析、具體的解決方案、驗證測試結果,以及預防優化的方法。 問題背景 隨

加載 , 權重 , aigc , 解決方案

mb68738fa1c4e31 - 馬拉松比賽 TRAE solo 軟件使用指南?

圍巾哥蕭塵演講稿邏輯結構整理 該演講稿主要圍繞 TRAE 軟件的使用展開,從基礎功能(V1.0)講到當前體系(V2.0),並指導聽眾如何利用該軟件打造產品。 序號 模塊名

產品開發 , AI寫作 , aigc , 環境搭建 , 基礎功能

mob649e8167c4a3 - modelscope 運行 llama

modelscope 運行 llama 的問題,是在進行大規模深度學習模型實驗時我所遇到的一個技術挑戰。本文將詳細記錄解決這一問題的思路和過程。 首先進行業務場景分析,我們的主要目標是使得模型能夠在不同的環境下高效而準確地運行。基於此,我繪製了一張四象限圖,以展示團隊在技術債務的分佈情況,幫助識別優先級和影響力的關係。 quadrantChart title 技術債務分佈

優先級 , aigc , 基礎設施 , 迭代

mob64ca12d1a59e - aigc使用體會

在探索和使用 AIGC(人工智能生成內容)技術時,我積累了不少體會,今天來和大家分享一下。AIGC 的魅力在於它能夠生成高質量的文本、圖像等內容,但要想真正發揮其潛力,我們需要進行一系列的環境準備、集成步驟、配置詳解、實戰應用、性能優化與生態擴展。以下是我的詳細記錄,希望能幫助到正在探索這一領域的你。 環境準備 在使用 AIGC 技術之前,首先要做好環境的準備。這包括安裝必要的依

技術棧 , 配置文件 , aigc , Python

mob649e8166179a - ollama 跑雙顯卡的原因不跑GPU

ollama 跑雙顯卡的原因不跑GPU 在當今的深度學習和人工智能應用中,使用雙顯卡的配置可以極大地提升模型訓練和推理的性能。然而,許多用户在使用 ollama 時,發現儘管配置了雙顯卡,卻仍然無法有效利用 GPU。本文將深入探討這個問題的背後原因,並提供解決方案。 背景定位 適用場景分析,人們希望在高性能計算任務中充分利用硬件資源,尤其是在進行深度學習模型訓練時,雙顯卡的配

性能需求 , aigc , 深度學習 , CUDA

mob64ca12dc88a3 - idea中的copilot插件應用實踐

在當前的軟件開發環境中,IDEA中的Copilot插件為程序員提供了強大的智能輔助編程能力,極大地提升了開發效率與代碼質量。本文將深入探討在IDEA中應用Copilot插件的實踐過程,包括從業務背景、演進歷程到架構設計、性能攻堅等多個方面的詳細記錄。 背景定位 隨着軟件開發的快速發展,程序員面臨着越來越多的複雜性,早已不再是單一的編碼任務。開發者需要快速適應不斷變化的需求和技術,

架構設計 , aigc , 開發者 , ci

mob64ca12f062df - ollama模型下載換路徑

在一次項目中,我遇到了一些關於“ollama模型下載換路徑”的問題。為了分享我解決這個問題的過程,我特別記錄下了這整個過程的細節,希望能為他人提供參考。下面將詳細介紹解決這一問題的演示和實操步驟。 環境預檢 在切換模型下載路徑之前,我首先進行了環境的預檢,包括了硬件配置和依賴版本的對比。 我使用了下圖展示了我的硬件拓撲: mindmap root 硬件拓撲

依賴包 , bash , aigc , 安裝過程

mob64ca12ebf2cc - AIGC提示詞工程樣本

AIGC提示詞工程樣本 在當今的信息技術行業,如何有效地應用AIGC(人工智能生成內容)提示詞工程顯得尤為重要。本文將通過系統化的步驟,展示如何解決AIGC提示詞工程樣本的問題。 環境準備 為了順利進行,我們需要先安裝必要的依賴。以下是跨平台安裝命令: # Ubuntu sudo apt-get install python3-pip # MacOS brew inst

API , aigc , JAVA , Json

網易雲信IM - AI+文旅+遊戲:跨越四百年的“尋夢”之旅

官印一方,文心千古。“他是鐵骨文人,曾拒絕張居正拉攏仕途坎坷,直言上奏;他是遂昌縣令,護百姓,修書院,下鄉勸農,囚犯自願回牢獄。” 四百年前,湯顯祖與遂昌結下不解之緣;四百年後,循着《牡丹亭》的遺韻,穿越時空,終於重逢於這片他曾深愛的土地。 在網易雲信的幫助下,《忘川風華錄》中的湯顯祖跨越古今的清夢,一襲紫衣斜倚梅窗,手中的狼毫重新着墨,這一次,寫的不僅是戲文,更是與

實時對話AI智能體 , ip , aigc , bard , 對話AI智能體 , 對話智能體

mob649e815574e6 - OLLAMA模型地址

在這篇博文中,我將詳細記錄如何解決“OLLAMA模型地址”相關的問題,確保讀者能夠清晰地理解整個過程。接下來,我將通過一系列結構劃分,來深入探討這一實現方式,包括環境預檢、部署架構、安裝過程、依賴管理、配置調優及擴展部署。 首先,我們需要考慮到基礎環境的要求,確保一切順利進行。在環境預檢中,我創建了一張思維導圖,具備硬件拓撲結構,以幫助我理解整體系統的組成,以及所需的軟件與硬件關係。

bash , aigc , 子節點 , Web

mob64ca12e51ecb - langchain4j spring boot集成

在這篇博文中,我將詳細介紹如何將 LangChain4j 集成到 Spring Boot 項目中,以便快速構建基於語言模型的應用。我們會從環境準備開始,一步一步講解集成過程、配置細節、實戰應用及常見問題解決方法,最後給出性能優化的建議。 環境準備 首先,確保你的開發環境中安裝了 Java 以及 Maven,建議使用 JDK 11 及以上版本。以下是所需的依賴和工具: | 組件

性能優化 , API , xml , aigc

yzy121403725 - MLOps

1. 定義與本質 MLOps 是一套將機器學習模型從開發(實驗)落地到生產環境,並實現全生命週期自動化、可觀測、可追溯的工程實踐體系。 核心目標:解決 “模型訓練出來能用,但上線難、維護難、迭代慢” 的痛點(比如傳統 ML 流程中,數據科學家訓練的模型,運維人員難以部署,且上線後數據漂移、模型性能下降無法及時感知)。 與傳統運維的區別:傳統運維聚焦

數據 , MLOps , aigc , llama , ML