@交叉驗證

動態 列表
@u_6813689

終於把機器學習中的交叉驗證搞懂了!!

核心思想 在標準的模型訓練中,我們通常會將數據集劃分為訓練集和測試集。訓練集用於模型學習參數,測試集用於評估模型的最終性能。 然而,如果測試集本身具有偏差,或者我們想更精細地調整模型(例如超參數調優),僅僅使用一次劃分可能會導致評估結果不夠穩定或具有過高的方差。 交叉驗證的核心目標是:獲得一個更穩定、更可靠的模型性能估計,減少對特定數據劃分的依賴。 交叉驗

u_6813689 頭像

@u_6813689

昵稱 程序員小2