基於 Transformer 架構的基礎模型,已在自然語言處理與計算機視覺等領域引發深刻變革,推動技術從「一事一模型」的定製範式,邁向通用化的新階段。然而,當這類模型進入科學研究領域時,卻遭遇了明顯的水土不服。科學觀測數據來源多樣、格式不一,且常包含各類觀測噪聲,使得數據呈現出顯著的「複雜異質性」。這一現實使得科學數據分析陷入兩難: 若僅處理單一類型數據,則難以充分挖掘其潛在價值;若依賴