博客 / 列表

HyperAI超神經 - 在線教程| 騰訊混元開源端側翻譯工具HY-MT1.5,1.8B模型僅需1G內存

在機器翻譯領域,傳統的高性能模型往往面臨兩個核心難題。對於主流語言,閉源商業模型效果出眾但調用成本高,模型參數量動輒百億級別,需要高昂的算力支持,難以在手機等消費級設備上部署。另一方面,對於數據稀缺的低資源小語種,以及包含專業術語、文化特定表達的文本,模型翻譯質量常常不佳,容易出現幻覺問題或語義偏差。這導致用户在日常和移動場景下,常常在高質量、高成本的雲端服務與本地化、輕量化但效果不足的

機器學習 , 多語言 , 機器翻譯 , AI , 人工智能 , 深度學習

HyperAI超神經 - 完整回放|上海創智/TileAI/華為/先進編譯實驗室/AI9Stars深度拆解 AI 編譯器技術實踐

在持續演進的 AI 編譯器技術浪潮中,越來越多的探索正在發生、沉澱與交匯。12 月 27 日,Meet AI Compiler 第八期正是在這樣的背景下與大家如期相見。 本期活動,我們邀請了來自上海創智學院、TileAI 社區、華為海思、先進編譯實驗室、AI9Stars 的 5 位專家,帶來了覆蓋軟件棧設計、算子開發到性能優化的全鏈路分享。講師們結合各自團隊的長期探索,展示了不

機器學習 , AI , 知識 , 人工智能 , 編譯器 , 深度學習

HyperAI超神經 - 【vLLM 學習】Rlhf

vLLM 是一款專為大語言模型推理加速而設計的框架,實現了KV 緩存內存幾乎零浪費,解決了內存管理瓶頸問題。 更多 vLLM 中文文檔及教程可訪問 →vllm.hyper.ai/ *在線運行 vLLM 入門教程:零基礎分步指南 源碼examples/offline_inference/rlhf.py """ 一個基於 vLLM 的 RLHF 簡單實現演示,靈感來源於 O

編程 , 機器學習 , vLLM , AI , 人工智能 , 深度學習

HyperAI超神經 - 【Triton 教程】triton.language.advance

Triton 是一種用於並行編程的語言和編譯器。它旨在提供一個基於 Python 的編程環境,以高效編寫自定義 DNN 計算內核,並能夠在現代 GPU 硬件上以最大吞吐量運行。 更多 Triton 中文文檔可訪問 →triton.hyper.ai/ 推進 1 個塊指針。 參數**:** base- 要推進的塊指針。 offsets- 要推進的偏移量,

編程 , 機器學習 , AI , 人工智能 , 深度學習

HyperAI超神經 - 貝佐斯/比爾蓋茨/英偉達/英特爾等押注,NASA工程師帶隊打造通用機器人大腦,公司估值達20億美元

在大模型可以從互聯網、圖像庫和海量文本中「無限生長」的今天,機器人卻被困在另一個世界——真實世界的數據極度稀缺、昂貴且不可複用。Business Insider 曾發佈過一則看似輕巧卻又極具洞察力的報道,「AI 機器人面臨數據荒,一家初創公司找到了出人意料的解決方案」。 報道指出,相比語言和視覺模型幾乎取之不盡的訓練語料,機器人與現實世界交互所需的數據在規模、結構化程度和可遷移性上都

機器學習 , 數據 , 機器人 , 人工智能 , 深度學習

HyperAI超神經 - 在線教程丨 David Baker 團隊開源 RFdiffusion3,實現全原子蛋白質設計的生成式突破

近年來,利用生成式深度學習方法在新功能蛋白質設計方面取得了顯著進展。目前包括 RFdiffusion(RFD1)和 BindCraft 在內的大多數方法,均採用氨基酸殘基水平的蛋白質表示,已能夠成功設計蛋白質單體、組裝體以及蛋白質-蛋白質相互作用體系,但其分辨率仍不足以精確設計與非蛋白質組分(如小分子配體與核酸)發生特異性側鏈相互作用的結構。 RFdiffusion2(RFD2)雖然

機器學習 , DNA , AI , 人工智能 , 深度學習

HyperAI超神經 - 【vLLM 學習】Reproduciblity

vLLM 是一款專為大語言模型推理加速而設計的框架,實現了 KV 緩存內存幾乎零浪費,解決了內存管理瓶頸問題。 更多 vLLM 中文文檔及教程可訪問 →vllm.hyper.ai/ *在線運行 vLLM 入門教程:零基礎分步指南 源碼 examples/offline_inference/reproduciblity.py # SPDX-License-Identifie

vLLM , gpu , 人工智能 , 深度學習 , cpu

HyperAI超神經 - 【Triton 教程】triton_language.make_block_ptr

Triton 是一種用於並行編程的語言和編譯器。它旨在提供一個基於 Python 的編程環境,以高效編寫自定義 DNN 計算內核,並能夠在現代 GPU 硬件上以最大吞吐量運行。 更多 Triton 中文文檔可訪問 →triton.hyper.ai/ triton.language.make_block_ptr(base: tensor, shape, strides, offse

編程器 , Triton , gpu , 編程語言 , 人工智能 , 深度學習 , cpu

HyperAI超神經 - 【TVM教程】設計與架構

TVM 現已更新到 0.21.0 版本,TVM 中文文檔已經和新版本對齊。 Apache TVM 是一個深度的深度學習編譯框架,適用於 CPU、GPU 和各種機器學習加速芯片。更多 TVM 中文文檔可訪問 →Apache TVM 本文檔適用於想要了解 TVM 架構或積極開發項目的開發者。本文檔組織結構如下: 整體編譯流程示例:概述 TVM 如何將一個高級模型描述轉換為可部

數據結構 , 神經網絡 , API , TVM , 人工智能 , 深度學習 , Python

HyperAI超神經 - 2026年將成中美AI競賽拐點?美國監管邏輯轉向背後,各巨頭算力豪賭未止

如果要用關鍵詞概括 2025 年,那麼這一年無可爭議地屬於人工智能:當 AI 發展不再止步於技術圈內部的競賽,而深度滲入內容生產、情感互動和公共討論,那麼它已經成為了塑造世界的真實力量。 人們對 AI 的評價也從未如此分裂。劍橋詞典發佈了 2025 年度詞「Parasocial(準社會關係)」,指出了人們與虛擬對象——包括 AI 聊天機器人——之間愈發普遍的單向情感連接。 「隨着與

插入圖片 , 人工智能 , 基礎設施 , 深度學習

HyperAI超神經 - 200億美元豪賭!xAI單押馬斯克巨注叫板OpenAI,未來商業續航成最大問號

2025 年 10 月,多家媒體援引投行消息稱,馬斯克旗下的 xAI 正在推進一筆規模約 200 億美元的新融資,或將躋身全球融資規模最大的 AI 初創公司之一。 知情人士透露,該輪融資包含約 125 億美元的結構化債務,並與 NVIDIA 產品採購協議綁定,意味着 xAI 將以未來算力交付與長期供貨為抵押,鎖定芯片的獲取優先級。 在融資結構中引入大比例債務,無疑是馬斯克以個人主導方

人工智能 , 深度學習 , xAI

HyperAI超神經 - 活動預告丨上海創智/TileAI/華為/先進編譯實驗室齊聚上海,TVM/TileRT/PyPTO/Triton各顯神通

隨着 AI 模型規模不斷攀升,開發者和工程團隊對計算性能、資源利用率和執行效率的要求也愈發嚴格。也正因如此,AI 編譯器正在成為硬件與應用之間的關鍵樞紐,為訓練與推理提供高效執行和智能算力調度。 在這一趨勢下,業內對前沿技術交流與最佳實踐分享的需求也隨之升温。越來越多的團隊希望通過面對面的深入討論,探索算力優化的新方法、驗證落地路徑、並從真實場景中汲取經驗。 一直以來,由 Hyp

Triton , TileLang , TVM , 人工智能 , 編譯器 , 深度學習

HyperAI超神經 - 重塑無序蛋白集合預測能力,英偉達/MIT/牛津大學/哥本哈根大學/Peptone等發佈生成式模型及新評測基準

在結構生物學的發展歷史中,「結構決定功能」一度被視為近乎不可動搖的基本法則。無論是胰島素的經典螺旋構象,還是血紅蛋白的四聚體架構,都強化了一個共識:蛋白質要發揮生物學作用,必須擁有穩定的三維結構。 然而,內在無序蛋白(IDPs)及其內在無序區域(IDRs)的發現, 正不斷重塑這一傳統認知。它們在生理條件下並不形成固定結構,卻深度參與信號轉導、基因轉錄調控等核心過程,並與癌症、神經退行

生成模型 , 生物醫學 , AI , 人工智能 , 深度學習 , 蛋白質

HyperAI超神經 - 首個天文多模態基礎模型AION-1誕生!UC伯克利等基於2億天文目標預訓練,成功構建泛化性多模態天文AI框架

基於 Transformer 架構的基礎模型,已在自然語言處理與計算機視覺等領域引發深刻變革,推動技術從「一事一模型」的定製範式,邁向通用化的新階段。然而,當這類模型進入科學研究領域時,卻遭遇了明顯的水土不服。科學觀測數據來源多樣、格式不一,且常包含各類觀測噪聲,使得數據呈現出顯著的「複雜異質性」。這一現實使得科學數據分析陷入兩難: 若僅處理單一類型數據,則難以充分挖掘其潛在價值;若依賴

多模態 , AI , 天文學 , 人工智能 , 深度學習

HyperAI超神經 - AI 論文週報丨通用Agent開發/目標檢測/開源物理推理模型……一文了解 AI 前沿動態

近年來,大語言模型(LLMs)的發展已將研究前沿從解謎任務推進至科學級推理——即能夠應對那些答案必須經受自然規律檢驗、而不僅符合評分標準的複雜問題。物理學是衡量這一轉變的最嚴苛標準,因為它以根本性方式將符號系統與現實世界相聯結,是現代大多數技術的基石。 基於此,來自上海人工智能實驗室的研究團隊通過開發具備卓越物理推理能力的大規模語言模型,成功推動了物理學研究的進展,尤其在解決國際奧林

人工智能 , 深度學習

HyperAI超神經 - 從乾洗店到伊麗莎白女王工程獎,李飛飛逆行硅谷技術神話,聚焦AI去人性化風險

2025 年春,普林斯頓大學物理學學士、加州理工學院計算神經科學博士李飛飛教授榮獲「伊麗莎白女王工程獎(Queen Elizabeth Prize for Engineering)」,這一獎項被視為「工程領域的諾貝爾獎」。評審團表彰了李飛飛在計算機視覺與深度學習中的奠基性工作,認為她的研究「讓機器第一次以接近人類的方式看見世界」。 「工程不止是算力與算法,更是責任與共情。」李飛飛在領

人工智能 , 深度學習

HyperAI超神經 - 從9,874篇文獻到1.5萬晶體結構,MOF-ChemUnity重構MOF全景知識,推動材料發現進入「可解釋AI」時代

在材料科學領域,金屬有機框架(Metal–Organic Frameworks,MOFs)堪稱科學家們的「瑞士軍刀」:它們具有高比表面積、化學可調性和結構多樣性,在氣體分離與儲存、催化以及傳感等領域具有廣泛應用。然而,對於科研人員而言,MOF 的世界極其龐大且複雜——目前已有超過 12.5 萬種 MOF 框架被合成,並計算預測了數百萬種可能的結構。 雖然人工智能(AI)已經深刻改變了

人工智能 , 深度學習 , 材料科學

HyperAI超神經 - 在線教程丨目標檢測邁入「全局感知」時代:清華大學等發佈 YOLOv13,實現速度、精度雙突破

在自動駕駛、工業質檢、安防監控等需要「毫秒級反應」的應用場景中,實時目標檢測始終是一條極具挑戰的技術賽道。過去十年裏,YOLO 系列憑藉輕量高效的架構成為該領域的主流方案,從最初的 YOLO 到近年的 YOLOv11、YOLOv12,模型不斷在速度與精度之間尋找新的平衡點。 不過,即便進化多次,YOLO 系列的底層機制依舊面臨共同瓶頸: 要麼像卷積那樣只能在固定感受野內做局部聚合,要

卷積神經網絡 , 人工智能 , 計算機視覺 , 實時目標檢測

HyperAI超神經 - 跨學科創新遠超人類?AI科學家提假設/做實驗/發頂會開啓科學研究新範式

2024 年 8 月,由 Transformer 論文作者之一 Llion Jones 創立的 Sakana AI 公司宣佈推出全球首位「AI 科學家(AI Scientist)」, 通過自主生成研究想法、設計實驗、編寫代碼、執行實驗乃至撰寫論文,並藉助「AI 審稿人」對結果進行評審與改進,形成了完整閉環的科研生態系統。今年 3 月,該系統產出的一篇計算機科學論文通過了 ICLR 202

AI , 人工智能 , 深度學習