博客 / 列表

HyperAI超神經 - 首個天文多模態基礎模型AION-1誕生!UC伯克利等基於2億天文目標預訓練,成功構建泛化性多模態天文AI框架

基於 Transformer 架構的基礎模型,已在自然語言處理與計算機視覺等領域引發深刻變革,推動技術從「一事一模型」的定製範式,邁向通用化的新階段。然而,當這類模型進入科學研究領域時,卻遭遇了明顯的水土不服。科學觀測數據來源多樣、格式不一,且常包含各類觀測噪聲,使得數據呈現出顯著的「複雜異質性」。這一現實使得科學數據分析陷入兩難: 若僅處理單一類型數據,則難以充分挖掘其潛在價值;若依賴

多模態 , AI , 天文學 , 人工智能 , 深度學習

HyperAI超神經 - AI 論文週報丨通用Agent開發/目標檢測/開源物理推理模型……一文了解 AI 前沿動態

近年來,大語言模型(LLMs)的發展已將研究前沿從解謎任務推進至科學級推理——即能夠應對那些答案必須經受自然規律檢驗、而不僅符合評分標準的複雜問題。物理學是衡量這一轉變的最嚴苛標準,因為它以根本性方式將符號系統與現實世界相聯結,是現代大多數技術的基石。 基於此,來自上海人工智能實驗室的研究團隊通過開發具備卓越物理推理能力的大規模語言模型,成功推動了物理學研究的進展,尤其在解決國際奧林

人工智能 , 深度學習

HyperAI超神經 - 從乾洗店到伊麗莎白女王工程獎,李飛飛逆行硅谷技術神話,聚焦AI去人性化風險

2025 年春,普林斯頓大學物理學學士、加州理工學院計算神經科學博士李飛飛教授榮獲「伊麗莎白女王工程獎(Queen Elizabeth Prize for Engineering)」,這一獎項被視為「工程領域的諾貝爾獎」。評審團表彰了李飛飛在計算機視覺與深度學習中的奠基性工作,認為她的研究「讓機器第一次以接近人類的方式看見世界」。 「工程不止是算力與算法,更是責任與共情。」李飛飛在領

人工智能 , 深度學習

HyperAI超神經 - 從9,874篇文獻到1.5萬晶體結構,MOF-ChemUnity重構MOF全景知識,推動材料發現進入「可解釋AI」時代

在材料科學領域,金屬有機框架(Metal–Organic Frameworks,MOFs)堪稱科學家們的「瑞士軍刀」:它們具有高比表面積、化學可調性和結構多樣性,在氣體分離與儲存、催化以及傳感等領域具有廣泛應用。然而,對於科研人員而言,MOF 的世界極其龐大且複雜——目前已有超過 12.5 萬種 MOF 框架被合成,並計算預測了數百萬種可能的結構。 雖然人工智能(AI)已經深刻改變了

人工智能 , 深度學習 , 材料科學

HyperAI超神經 - 在線教程丨目標檢測邁入「全局感知」時代:清華大學等發佈 YOLOv13,實現速度、精度雙突破

在自動駕駛、工業質檢、安防監控等需要「毫秒級反應」的應用場景中,實時目標檢測始終是一條極具挑戰的技術賽道。過去十年裏,YOLO 系列憑藉輕量高效的架構成為該領域的主流方案,從最初的 YOLO 到近年的 YOLOv11、YOLOv12,模型不斷在速度與精度之間尋找新的平衡點。 不過,即便進化多次,YOLO 系列的底層機制依舊面臨共同瓶頸: 要麼像卷積那樣只能在固定感受野內做局部聚合,要

卷積神經網絡 , 人工智能 , 計算機視覺 , 實時目標檢測

HyperAI超神經 - 跨學科創新遠超人類?AI科學家提假設/做實驗/發頂會開啓科學研究新範式

2024 年 8 月,由 Transformer 論文作者之一 Llion Jones 創立的 Sakana AI 公司宣佈推出全球首位「AI 科學家(AI Scientist)」, 通過自主生成研究想法、設計實驗、編寫代碼、執行實驗乃至撰寫論文,並藉助「AI 審稿人」對結果進行評審與改進,形成了完整閉環的科研生態系統。今年 3 月,該系統產出的一篇計算機科學論文通過了 ICLR 202

AI , 人工智能 , 深度學習