2025 年是大模型推理技術發展的關鍵之年。自年初 DeepSeek R1 發佈引發全民關注以來,推理框架加速需求暴漲,推理優化的戰場驟然升温。以 vLLM、SGLang、MindIE 為代表的高性能推理引擎,以及 FlashInfer、FlashAttention、ATB 等底層加速庫不斷突破性能瓶頸,相比年初,部分前沿框架的推理性能提升已達 3 到 4 倍以上。 隨着 Agent
GPUStack v2 以高性能推理與生產級穩定性為核心演進方向,對整體架構進行了全面重構,實現了組件間的靈活解耦,並對多推理引擎和異構算力進行了深度優化,充分釋放推理引擎在吞吐、延遲與併發方面的性能潛力。 基於這一架構設計,GPUStack v2 聚焦 Linux 原生環境,以充分利用其在生態和 AI 基礎設施領域的成熟優勢。 對於 Windows 用户,推薦通過 WSL2(W
vLLM 是一款專為大語言模型推理加速而設計的框架,實現了 KV 緩存內存幾乎零浪費,解決了內存管理瓶頸問題。 更多 vLLM 中文文檔及教程可訪問 →vllm.hyper.ai/ *在線運行 vLLM 入門教程:零基礎分步指南 源碼 examples/offline_inference/reproduciblity.py # SPDX-License-Identifie
vLLM 是一款專為大語言模型推理加速而設計的框架,實現了KV 緩存內存幾乎零浪費,解決了內存管理瓶頸問題。 更多 vLLM 中文文檔及教程可訪問 →vllm.hyper.ai/ *在線運行 vLLM 入門教程:零基礎分步指南 源碼examples/offline_inference/rlhf.py """ 一個基於 vLLM 的 RLHF 簡單實現演示,靈感來源於 O
vLLM(Virtual Large Language Model) 和 Ollama 都是用於運行大語言模型 大語言模型/LLM 的工具,旨在降低本地部署和使用大模型的門檻。應用程序可以通過它們的統一接口,使用不同大模型。 簡介 vLLM:是一個高性能的大模型推理引擎,專注於優化模型運行效率。通過 PagedAttention 等技術大幅提升吞吐量(每秒處理請求數)、降