Stories

List
Create Time

彩筆運維勇闖機器學習--多元線性迴歸(實戰)

前言 書接上文,上一小節簡單介紹了多元迴歸的基本原理、使用方式,本小節來實踐:qps與cpu、內存、磁盤io、網絡io之間的關係 獲取數據 參考一元線性迴歸的獲取方式 from flow import * from datetime import datetime start_time = datetime.strptime('2025-04-06 00:00:00', '%Y-%m-%d %H

Create Time

彩筆運維勇闖機器學習--最小二乘法的數學推導

前言 今天我們來討論一下回歸算法當中的數學實現。本人數學也是渣,大學時期概率論一直掛到清考才勉強通過,+_+ !!,如今勇闖機器學習,硬着頭皮重新學習了微積分和線代,也是為了記錄自己最近的狀態,避免過段時間忘記了。描述的時候有不周全的地方,請各位大佬們多擔待了 本節將會運用一些數學知識來解釋一下相關的迴歸算法的合理性,雖有些枯燥,但知其然也知其所以然,多瞭解一些總是好的 最小二乘法 最小二乘法的核

Create Time

彩筆運維勇闖機器學習:多項式迴歸

前言 在之前的討論中,討論的都是線性迴歸,自變量與結果可以通過一條直線來解釋。而今天討論的問題,自變量與結果可能需要曲線來擬合,也就是所謂的 \(x^n\),n=2 開始探索 老規矩,先運行起來,再探索原理 1. scikit-learn import numpy as np from sklearn.preprocessing import PolynomialFeatures from skl

Create Time

彩筆運維勇闖機器學習--擬合

前言 今天我們來討論擬合的問題 在之前的篇幅,主要討論的是線性迴歸的問題,不管是一元、多元、多項式,本質都是線性迴歸問題。線性迴歸在機器學習中屬於“監督學習”,也就是使用已有的、預定義的“訓練數據”集合,訓練系統,在解釋未知數據時,也能夠很好的解釋 而模型訓練完成之後,可能會有3中狀態:“欠擬合”、“最佳適配”、“過擬合”。本小節就來消息討論一下,怎麼判斷訓練出來的模型處於什麼樣的狀態 過擬合 老

Create Time

彩筆運維勇闖機器學習--邏輯迴歸

前言 從本節開始,我們的機器學習之旅進入了下一個篇章。之前討論的是迴歸算法,迴歸算法主要用於預測數據。而本節討論的是分類問題,簡而言之就是按照規則將數據分類 而要討論的邏輯迴歸,雖然名字叫做迴歸,它要解決的是分類問題 開始探索 scikit-learn 還是老規矩,先來個例子,再討論原理 假設以下場景:一位老哥想要測試他老婆對於抽煙忍耐度,他進行了以下測試 星期一

Create Time

彩筆運維勇闖機器學習--決策樹

前言 決策樹是一種常用的機器學習模型,用於分類和迴歸任務,它通過模擬“樹”的結構來對數據進行決策。本節我們詳細討論的是決策樹中的分類任務 開始探索 scikit-learn 假設以下運維場景 CPU 低:40% 中:40%~70% 高:70% 內存 低:60% 中:60%~85% 高:85% 磁盤I/O 低:40%

Create Time

彩筆運維勇闖機器學習--隨機森林

前言 隨機森林的出現,是為了解決決策樹對訓練數據過擬合的問題而出現的。決策樹在訓練的工程中,可以讓每一個葉子節點的不確定性降為0(即熵或者基尼指數為0),這樣做可能把訓練數據中的偶然性、異常值或噪聲也當成了“規 律”去學習了 對於複雜高維的數據,隨機森林的算法可以更好的泛化能力 開始探索 scikit-learn 老規矩,先上代碼,看看隨機森林的用法 from sklearn.ensemble i

Create Time

彩筆運維勇闖機器學習--梯度下降法

前言 彩筆運維勇闖機器學習,今天我們來討論一下梯度下降法 梯度 首先要搞明白什麼是梯度,那就要先從導數説起 導數 函數\(y=f(x)\)的自變量\(x\)在一點\(x_0\)上產生一個增量\(\Delta x\)時,函數輸出值的增量\(\Delta y=f(x_0 + \Delta x)-f(x_0)\)與自變量增量\(\Delta x\)的比值在\(\Delta x\)趨於0時的極限\(a\)

Create Time

彩筆運維勇闖機器學習--lasso迴歸

前言 彩筆運維勇闖機器學習,今天我們來討論一下lasso迴歸,本期又是一起數學推理過程展示 座標下降法 目標找到一組參數,使目標函數值最小。比如\(f(x,y)=3x^2+5xy+10y^2\),要找到\(x,y\)使得\(f(x,y)\)取值最小 \[x_j^{(k+1)} = \arg \min_{x_j} f(x_1^{(k+1)}, \dots, x_{j-1}^{(k+1)}, x_j

Create Time

彩筆運維勇闖機器學習--GBDT

前言 本文討論的GBDT算法,也是基於決策樹 開始探索 scikit-learn 老規矩,先上代碼,看看GBDT的用法 from sklearn.datasets import load_iris from sklearn.ensemble import GradientBoostingClassifier from sklearn.model_selection import train_tes

Create Time

彩筆運維勇闖機器學習--KNN算法

前言 彩筆運維勇闖機器學習:KNN算法,它也是分類中的一種 開始探索 scikit-learn import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler

Create Time

彩筆運維勇闖機器學習--孤立森林

前言 孤立森林,一種非常高效快速的異常檢測算法 開始探索 scikit-learn import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import IsolationForest rng = np.random.RandomState(0) X_train = 0.3 * rng.randn(100