我們知道,在go語言中,goroutine的執行會隨着main線程的退出而終結, 即如果main線程退出,則所有的goroutine都會被強制退出,不管你是否已經執行完畢。
如果我們希望main進程等待所有的goroutine執行完畢後再退出,則可以有3種方式來實現,具體如下:
1. 使用go標準庫sync中提供的 sync.WaitGroup裏面提供的Add, Done, Wait方法;
package main
import (
"fmt"
"sync"
"time"
)
// 專業企業信息化軟件定製開發 免費諮詢 https://dev.tekin.cn/contactus.html
var wg sync.WaitGroup // 定義全局變量wg類型是sync.WaitGroup結構體, 因為我們要使用的方法是綁定在這個結構體上的
func test(n int) {
defer wg.Done() //協程每次完成後執行這個將計數增量 -1; 注意這個代碼被調用的次數要和wg.Add(delta)這裏設置的增量一致
for i := 1; i <= n; i++ {
fmt.Printf("test %v \n", i)
time.Sleep(100 * time.Millisecond)
}
}
func main() {
wg.Add(2) // 增加變量質量, 這裏的數字是你後面要啓動幾個協程就寫幾, 如要起2個協程就寫 2, 這裏的數字有1個餘量 即0, 所以如果是2 則wg.Done()最多可執行3次, 超過3次就會報panic異常, 如果 wg.Done()只執行1次則會報死鎖異常!!!
go test(10)
go test(5)
test(6) // 這個正常 因為wg源碼裏面的增量比較是 < 0 所以
//test(7) //這個會異常了 因為上面的的delta增量為2
for i := 0; i < 10; i++ {
fmt.Printf("main %v\n", i)
}
// 這裏會阻塞主進程等待所有的協程執行完畢後才會退出
wg.Wait()
}
2. 利用管道chan讀取時會一直阻塞當前線程的特性實現等待
package main
import "fmt"
// 專業企業信息化軟件定製開發 免費諮詢 https://dev.tekin.cn/contactus.html
// 只讀/只寫 chan使用示例
// 發送消息 ch入參為僅寫
func Sender(ch chan<- int, exitCh chan struct{}) {
for i := 0; i < 10; i++ {
ch <- i
}
close(ch)
var a struct{}
exitCh <- a
}
// Receiver接收端 ch入參僅讀
func Receiver(ch <-chan int, exitCh chan struct{}) {
//循環
for {
v, ok := <-ch
if !ok {
break //退出循環
}
fmt.Println("v=", v)
}
var a struct{}
exitCh <- a
}
func main() {
// 聲明sender chan
var ch = make(chan int, 10)
var exitCh = make(chan struct{}, 2)
Sender(ch, exitCh)
Receiver(ch, exitCh)
var total = 0
for _ = range exitCh {
total++
if total == 2 {
break
}
}
fmt.Println("結束...")
}
總結
上面2種方式, 第一種實現起來比較簡單,可少寫一些代碼, 但是性能相比第二種方式要低一些,因為第一種方式裏面使用了race,原子狀態維護和不少unsafe的方法(見後面的WaitGroup源碼參考)。 第二種方式代碼稍微複雜,但是效率較高,控制也比較靈活。
sync.WaitGroup源碼參考
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sync
import (
"internal/race"
"sync/atomic"
"unsafe"
)
// A WaitGroup waits for a collection of goroutines to finish.
// The main goroutine calls Add to set the number of
// goroutines to wait for. Then each of the goroutines
// runs and calls Done when finished. At the same time,
// Wait can be used to block until all goroutines have finished.
//
// A WaitGroup must not be copied after first use.
//
// In the terminology of the Go memory model, a call to Done
// “synchronizes before” the return of any Wait call that it unblocks.
type WaitGroup struct {
noCopy noCopy
state atomic.Uint64 // high 32 bits are counter, low 32 bits are waiter count.
sema uint32
}
// Add adds delta, which may be negative, to the WaitGroup counter.
// If the counter becomes zero, all goroutines blocked on Wait are released.
// If the counter goes negative, Add panics.
//
// Note that calls with a positive delta that occur when the counter is zero
// must happen before a Wait. Calls with a negative delta, or calls with a
// positive delta that start when the counter is greater than zero, may happen
// at any time.
// Typically this means the calls to Add should execute before the statement
// creating the goroutine or other event to be waited for.
// If a WaitGroup is reused to wait for several independent sets of events,
// new Add calls must happen after all previous Wait calls have returned.
// See the WaitGroup example.
func (wg *WaitGroup) Add(delta int) {
if race.Enabled {
if delta < 0 {
// Synchronize decrements with Wait.
race.ReleaseMerge(unsafe.Pointer(wg))
}
race.Disable()
defer race.Enable()
}
state := wg.state.Add(uint64(delta) << 32)
v := int32(state >> 32)
w := uint32(state)
if race.Enabled && delta > 0 && v == int32(delta) {
// The first increment must be synchronized with Wait.
// Need to model this as a read, because there can be
// several concurrent wg.counter transitions from 0.
race.Read(unsafe.Pointer(&wg.sema))
}
if v < 0 {
panic("sync: negative WaitGroup counter")
}
if w != 0 && delta > 0 && v == int32(delta) {
panic("sync: WaitGroup misuse: Add called concurrently with Wait")
}
if v > 0 || w == 0 {
return
}
// This goroutine has set counter to 0 when waiters > 0.
// Now there can't be concurrent mutations of state:
// - Adds must not happen concurrently with Wait,
// - Wait does not increment waiters if it sees counter == 0.
// Still do a cheap sanity check to detect WaitGroup misuse.
if wg.state.Load() != state {
panic("sync: WaitGroup misuse: Add called concurrently with Wait")
}
// Reset waiters count to 0.
wg.state.Store(0)
for ; w != 0; w-- {
runtime_Semrelease(&wg.sema, false, 0)
}
}
// Done decrements the WaitGroup counter by one.
func (wg *WaitGroup) Done() {
wg.Add(-1)
}
// Wait blocks until the WaitGroup counter is zero.
func (wg *WaitGroup) Wait() {
if race.Enabled {
race.Disable()
}
for {
state := wg.state.Load()
v := int32(state >> 32)
w := uint32(state)
if v == 0 {
// Counter is 0, no need to wait.
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(wg))
}
return
}
// Increment waiters count.
if wg.state.CompareAndSwap(state, state+1) {
if race.Enabled && w == 0 {
// Wait must be synchronized with the first Add.
// Need to model this is as a write to race with the read in Add.
// As a consequence, can do the write only for the first waiter,
// otherwise concurrent Waits will race with each other.
race.Write(unsafe.Pointer(&wg.sema))
}
runtime_Semacquire(&wg.sema)
if wg.state.Load() != 0 {
panic("sync: WaitGroup is reused before previous Wait has returned")
}
if race.Enabled {
race.Enable()
race.Acquire(unsafe.Pointer(wg))
}
return
}
}
}