收藏 / 列表

老IT人 - NVIDIA RTX™ GPU 在 Houdini 中的渲染表現實測

近期我們的技術小夥伴對 NVIDIA RTX™ GPU 在 Houdini 中的渲染表現進行了詳細的測試,本次測試共選用 6 張 GPU,分別測試每張 GPU 在大、中、小三個場景中的性能表現,並將同級別的 NVIDIA Ada Lovelace 架構 GPU 與 NVIDIA Ampere 架構 GPU 進行對比分析,為大家更直觀地呈現 GPU 性能提升。 測試環境 測試場景 從左到右依次為

segmentfault

華明視訊科技 - 什麼是鐵路車號識別裝置?

在現代化鐵路貨運管理中,效率與準確性是衡量運營水平的關鍵尺度。傳統依賴人工抄錄車號的方式,不僅效率低下、成本高昂,更因人為因素導致數據不準,已成為制約礦區、編組站、貨運站等場景智能化升級的瓶頸。鐵路車號識別裝置,正是為解決這一核心痛點而生的智能化解決方案。 什麼是鐵路車號識別裝置? 鐵路車號識別裝置是一套基於前沿人工智能深度學習技術的自動化識別系統。它通過高清圖像捕捉與智能分析,對貨運

機器學習 , 圖像識別 , 算法 , 人工智能 , 深度學習

MIAOYUN - MIAOYUN | 每週AI新鮮事兒(10.17-10.24)

本週AI領域動態頻出,百度、阿里、DeepSeek推出高效OCR與視覺語言模型,提升文檔解析與多模態能力;騰訊、字節跳動分別開源世界模型與3D生成模型,推動3D內容生成;Anthropic、OpenAI、Google升級AI工具,聚焦生命科學、瀏覽器集成與開發體驗;華為鴻蒙6、宇樹機器人H2及多項評測基準發佈,推動AI向終端與實體場景加速落地,一起來回顧本週發生的AI新鮮事兒吧! AI 大模型 百

機器學習 , 機器人 , 自然語言處理 , 人工智能 , 深度學習

一點人工一點智能 - 書籍-《優化技術第一卷:連續優化》

書籍:Optimization techniques I:Continuous optimization 作者:Max CERF 出版:EDP Sciences​ 編輯:陳萍萍的公主@一點人工一點智能 鏈接:書籍下載-《優化技術第一卷:連續優化》 01 書籍介紹 這套分為兩卷的書籍概述了連續、離散和函數優化技術。本卷專注於連續優化,涉及實數變量的問題,無論是無約束還

函數 , 離散數學

求知上進 - Python 集合操作的魔法書

1. 集合數據結構概述 1.1 什麼是集合? Python 中的集合(set)是一種無序、可變、不允許重複元素的數據結構,基於數學集合概念。集合的主要特點包括: 無序性:元素沒有固定索引,無法通過位置訪問。 唯一性:自動去除重複元素。 可變性:set支持添加、刪除元素;frozenset是不可變版本。 高效性:基於哈希表,成員測

集合運算 , 人工智能 , 深度學習 , 集合操作 , Python

容智信息 - 企業AI落地破局:五步行動指南,從價值試點到組織效能躍遷

在AI技術熱潮下,不少企業陷入“概念喧囂卻落地無門”的困境——空有技術憧憬,卻不知從何入手,或盲目鋪開後效果寥寥。容智信息基於千餘家企業智能化實踐沉澱,提煉五步行動指南,為企業提供從“AI可用”到“價值可感”的清晰路徑。 AI落地切忌“大而全”的盲目投入,需優先選擇對業務有直接價值、流程相對清晰、出錯影響可控的高價值任務切入。例如:市場營銷領域:可先試點產品智能推薦、市場策略

觀點 , 資訊 , 自然語言處理 , 人工智能 , 深度學習

短短同學 - “哈希”機制是什麼?

一文讀懂哈希機制:從原理到實戰的全面解析 在編程與數據處理中,“哈希(Hash)” 是一個高頻出現卻易被混淆的概念 —— 它既是快速查找數據的 “加速器”,也是分佈式系統中數據分片的 “導航儀”,甚至在密碼存儲、數據校驗等場景中扮演關鍵角色。那麼,哈希機制究竟是什麼?它如何通過簡單邏輯實現高效功能?本文將從基礎原理到實際應用,徹底拆解哈希機制的核心邏輯。 一、哈希機制

code , 數組 , 人工智能 , 鏈表 , 深度學習

疆鴻智能研發中心 - CC LINK IE與ETHERNET/IP“語病”有治了!一網關讓產線精準同步

CC LINK IE與ETHERNET/IP“語病”有治了!一網關讓產線精準同步 在電子製造車間裏,PCB測試線如同一道精密的脈搏。一側,三菱PLC控制着機械臂的每一次起落;另一側,羅克韋爾PLC指揮着檢測儀的每次測量。這本應是完美的配合,卻因兩大工業巨頭“語言不通”——CC LINK IE與ETHERNET/IP協議無法直接對話,導致機械臂與檢測儀動作存在毫秒級延遲,最終

ETHERNET , ip , CCLINKIE , 協議轉換 , 人工智能 , 深度學習 , 網關 , 工業自動化

沉着的牙膏 - 運營商數據治理新範式:AI大模型賦能的低成本場景適配分類分級系統

一、概要: 隨着5G技術的推廣和數據量的急劇增長,運營商面臨着數據分類與合規管理的巨大壓力,尤其是在敏感數據的精準分類與新業務需求的快速適配方面。全知科技的“知源-AI數據分類分級系統”,該系統針對運營商在數據管理與合規方面的挑戰,提供了一種基於AI大模型賦能的低成本、場景適配性強的解決方案。該方案通過深度學習和知識圖譜技術,顯著提高了數據分類的效率和準確性,確保了數據在全生命週期中的安全與

人工智能

mb691327edb400f - AI面試智能體

培訓預算削減的背後,是時候重新審視招聘的真正成本。 年底覆盤,不少HR對着培訓報表愁眉不展:預算花了近百萬,員工滿意度剛過及格線,業務部門還抱怨“培訓沒用”。降本增效的要求之下,培訓預算首當其衝被壓縮。問題真的出在培訓本身嗎?或許,根源在於招聘環節——選錯人,才是企業最大的成本浪費。 01 培訓無效的背後:選錯人是最昂貴的成本 當業務部門抱怨“培訓沒用”時,他們

沉浸式 , 一對一 , 人工智能 , 深度學習

全棧技術開發者 - LLM 對時間序列推理的增強究竟指的是什麼?LLM 對齊(alignment regimes)與時序推理的可靠性之間是什麼關係?

時間序列數據廣泛出現於自然科學、社會科學以及工程技術等各類領域中,其核心特徵在於數據隨時間的演變規律。長期以來,如何從這些動態變化的數據中提取有價值的信息、實現精準預測、並基於歷史數據進行推理,一直是數據分析、統計學和機器學習研究的核心問題。傳統的時間序列分析方法,如自迴歸模型(AR)、移動平均模型(MA)、以及更復雜的狀態空間模型和卡爾曼濾波器,在一定程度上能夠描述和預測數據的

llm , 建模 , yyds乾貨盤點 , 人工智能 , 時間序列 , 深度學習 , 大模型

天潤融通科技 - AI替代人工:車企如何用天潤融通ZENAVA重塑試駕邀約流程

在競爭白熱化的汽車市場裏,試駕已經成了成交的入口。數據顯示,超過70%的客户在完成試駕後才會做出購車決定。換句話説,錯過試駕,就等於錯過大部分成交機會。 然而現實卻殘酷:一線銷售每天要撥打成百上千通電話,往往是上百次撥號,換不來幾次有效邀約。人力消耗巨大,結果卻參差不齊。更雪上加霜的是,客户對“騷擾電話”的反感與日俱增,傳統邀約方式正在快速失靈,寶貴的銷售線索不斷流失。

人工智能 , 深度學習

fangpin - 從 1.56% 到 62.9%:SFT 推理微調優化實戰

讀完這篇文章,你將用監督微調(SFT)把一個 1.5B 規模的數學模型在 GSM8K 上的零樣本推理正確率從 1.56% → 62.9%,同時把輸出格式遵循率從 18.9% → 100%。我們將完整走通數據集下載、Prompt 架構、訓練配置和評估方法,所有代碼均來自本倉庫 alignment 文件夾,保證可復現與透明。 本文將深入剖析 llm-from-scratch

lua , 人工智能 , 深度學習 , Json , Python

超神經HyperAI - 效率至高提升20倍!加州大學開發OmniCast,解決自迴歸天氣預報模型誤差累計問題

次季節至季節(Subseasonal-to-seasonal, S2S)尺度天氣預報介於短期天氣預報與長期氣候預測之間,聚焦未來 2 周至 6 周的天氣演變,精準填補了中遠期氣象預測空白,為農業規劃、災害防禦等提供關鍵依據。但 S2S 天氣預測既難依託快速衰減的大氣初始信息(中短期預報條件),又難捕捉尚未充分顯現的慢變邊界信號(氣候預測條件),在混沌的大氣系統與複雜的海陸氣相互作用下,預報難度顯著

機器學習 , 資訊 , openai , 人工智能 , 深度學習

wx6906fb3f9b17a - 分析了智能一卡(碼、臉)通系統集成方案,重點探討了不同識別介質(IC卡閘機、QR門禁、人臉梯控等)的技術特點及應用場景。針對門禁、閘機、梯控等場景,提出了混合認證和多介質統一管理策略

智能一卡(碼、臉)通系統方案分析 本文分析了智能一卡通系統集成方案,重點探討了不同識別介質(IC卡、二維碼、人臉識別等)的技術特點及應用場景。針對門禁、閘機、梯控等場景,提出了混合認證和多介質統一管理策略,強調採用"1用户ID+多識別憑證"架構實現靈活配置。文章詳細介紹了設備選型建議、授權管理流程以及典型配置案例,並給出分步實施的系統建議,為各類場

門禁一卡通 , 門禁 , 梯控 , 梯控一卡通 , 人工智能 , 深度學習 , 智能一卡通

沃觀態勢感知 - 從洞察到行動:AI驅動的海外社交媒體分析系統如何重塑營銷策略?

在全球化競爭不斷加劇的環境下,企業營銷策略不再依賴創意與經驗,而是逐漸向“數據驅動”和“實時反饋”方向演進。AI 驅動的海外社交媒體分析系統成為這一趨勢的核心力量,它不僅監測用户討論,更能識別趨勢、預測需求、洞察文化差異並轉化為實際的營銷行動建議。過去企業需要依靠大量手工整理才能獲得市場信息,如今 AI 海外社交媒體分析系統能夠在分鐘級速度識別輿論波動、熱點話題、內容表現差異與用

產品設計 , 人工智能 , 基礎設施 , 數據分析 , 社交媒體