在油氣行業,數據質量問題不是“可選項”,而是生存底線。一次錯誤的井位決策可能損失上億美元,一個誤判的管道風險可能引發環境災難。然而,高質量數據集在該行業的落地,遠比製造業或金融業更為艱難。其根源不在工具,而在行業固有的複雜性、數據鏈的斷裂性,以及長期形成的“經驗至上”慣性。 本文結合最新實踐,提出一條適配油氣行業特性的高質量數據集建設路徑——它必須尊重工程現實,承認沉默成本
引言 在數字化轉型加速背景下,企業普遍將數據規模作為能力指標,卻忽視了數據質量對決策效能的根本性制約。 本文基於真實企業實踐與數據治理框架(DAMA-DMBOK、DCMM、ISO 8000),系統提出構建高質量數據集的五大認知革命:從“數據量優先”轉向“關鍵數據可信”、從“IT主導”轉向“業務主責”、從“事後清洗”轉向“流程嵌入”、從“追求完美”轉向“場景化閾值”、從