@強化學習

动态 列表
@u_15641375

ROS2強化學習全攻略:從基礎到實戰,打造智能機器人未來

一、引言隨着機器人技術和人工智能的快速發展,ROS2(機器人操作系統 2)作為新一代機器人開發框架,為機器人應用提供了更強大的功能和更靈活的架構。強化學習作為人工智能領域的重要分支,能夠讓機器人通過與環境交互自主學習最優策略,在 ROS2 平台上的應用愈發廣泛。本文將介紹 ROS2 強化學習的學習路線以及相關案例。二、ROS2 強化學習學習路線(一)基礎理論知識強化學習基礎:深入

u_15641375 头像

@u_15641375

昵称 芯動大師

@chaoshenjinghyperai

僅用1年成為DeepMind頂樑柱,John Jumper博士畢業7年拿諾獎,開啓蛋白摺疊新時代

「我以為我只有 10% 的機會獲得諾貝爾化學獎」,得知獲獎消息後,John Jumper 在電話採訪中笑着説道。他的語氣中帶着謙遜與感慨,而這份殊榮的背後,則是 AlphaFold2 帶來的科學革命,徹底改變了蛋白質結構預測的方式。 截至目前,已有來自 190 個國家的 200 多萬人使用這一工具,它不僅加速了新藥研發和疾病研究,也為基礎科學探索提供了前所未有的支持,深刻影響了生命科學的未來發展。

chaoshenjinghyperai 头像

@chaoshenjinghyperai

昵称 超神經HyperAI

@deephub

解決GRPO優勢歸因錯誤,Chunk-GRPO讓文生圖模型更懂"節奏"

文本到圖像(T2I)生成模型的發展速度超出很多人的預期。從SDXL到Midjourney,再到最近的FLUX.1,這些模型在短時間內就實現了從模糊抽象到逼真細膩的跨越。但問題也隨之而來——如何讓模型生成的不僅僅是"一張圖",而是"正確的那張圖"?這涉及到如何讓AI理解人類在審美、風格和構圖上的真實偏好。 強化學習(RL)成為解決這個問題的關鍵技術。通過將人類偏好分數作為獎勵信號,可以對這些大模型進

deephub 头像

@deephub

昵称 deephub

@deephub

大模型強化學習的熵控制:CE-GPPO、EPO與AsyPPO技術方案對比詳解

LLM的強化學習訓練最近進展很快,SOTA模型在各種推理benchmark上的表現確實亮眼。但更值得關注的其實是另一條信息——從Rutgers到Alibaba再到HKUST,這些研究團隊正在攻克的是RL領域的一個老大難:怎麼控制好熵,同時避免模型退化成毫無用處的確定性輸出。 三篇新論文給出了不同角度的解法:CE-GPPO、EPO和AsyPPO。雖然切入點各有不同,但合在一起就能發現它們正在重塑大規

deephub 头像

@deephub

昵称 deephub