文章目錄 一、常用的分類與迴歸算法 1. 常用分類算法 1.2 常用迴歸算法 二、分類模型評價指標 1. 混淆矩陣(Confusion Matrix) 2. 準確率(Accuracy) 2.1 核心定義 2.2 計算公式
0. 模型訓練小知識 自從深度學習火了以後,大家就把傳統視覺算法看低了。 因為模型的訓練需要GPU或者CPU飛速運轉好久才能完成,而訓練出來的模型又每次都非常意外,所以大家又把模型訓練戲稱為煉丹,真是充滿了玄學意味。 深度學習時代,什麼最重要?數據!像我們這次的任務,需要準備100~500張圖片,確保包含不同角度、光照和模糊程度。如果想做的很好,業界推薦是幾千張
在深度學習項目中,你是否曾遇到過這樣的困惑:模型在訓練集上準確率高達98%,但在測試集上卻一塌糊塗;明明是分類任務,用準確率評估卻完全失真;不同模型的評估指標各有優劣,不知道該如何選擇。其實,模型評估是深度學習流程中至關重要的一環,它不僅能衡量模型的性能,更能指導我們進行模型優化和調參。今天,我們就從模型評估的核心邏輯入手,全面拆解分類、迴歸、序列預測等不同任務的常用評估指標,分
在本文中,我將分享如何通過關鍵策略提高“langchain rag”的召回準確率。這是一個在信息檢索領域不斷演進的挑戰,尤其是在構建高效的RAG(檢索增強生成)模型時。 初始技術痛點 隨着信息數量的激增,傳統的檢索技術逐漸無法滿足快速、準確獲取用户所需信息的需求。為了評估當前的業務規模,我使用了以下公式: $$ \text{召回率} = \frac{\text{相關文檔數}}