收藏 / 列表

mob64ca12d42833 - 如何修改llama模型的每層的結構

如何修改llama模型的每層的結構 在深度學習領域,llama模型由於其出色的性能被廣泛應用於自然語言處理(NLP)任務。然而,隨着具體業務需求的不斷變化和技術的持續發展,我發現需要對llama模型的每層結構進行修改以提升模型的適應性和效果。本文將詳細記錄這個過程,包括相關的背景信息、問題現象、深層次的根因分析、具體的解決方案、驗證測試結果,以及預防優化的方法。 問題背景 隨

加載 , 權重 , aigc , 解決方案

mob649e8167c4a3 - modelscope 運行 llama

modelscope 運行 llama 的問題,是在進行大規模深度學習模型實驗時我所遇到的一個技術挑戰。本文將詳細記錄解決這一問題的思路和過程。 首先進行業務場景分析,我們的主要目標是使得模型能夠在不同的環境下高效而準確地運行。基於此,我繪製了一張四象限圖,以展示團隊在技術債務的分佈情況,幫助識別優先級和影響力的關係。 quadrantChart title 技術債務分佈

優先級 , aigc , 基礎設施 , 迭代

mob64ca12d1a59e - mac docker 安裝 langchain

為了幫助大家在 Mac 上通過 Docker 安裝 LangChain,本文將詳細介紹整個過程,包括環境準備、分步指南、配置詳解、驗證測試、優化技巧以及排錯指南。無論你是新手還是有經驗的開發者,希望這篇文章能夠全面指導你完成安裝。 環境準備 在進行我們的安裝之前,有一些前置依賴需要準備好。這裏我們將以表格的形式列出版本兼容性矩陣。 組件

bash , aigc , Docker

mob649e8166179a - ollama 跑雙顯卡的原因不跑GPU

ollama 跑雙顯卡的原因不跑GPU 在當今的深度學習和人工智能應用中,使用雙顯卡的配置可以極大地提升模型訓練和推理的性能。然而,許多用户在使用 ollama 時,發現儘管配置了雙顯卡,卻仍然無法有效利用 GPU。本文將深入探討這個問題的背後原因,並提供解決方案。 背景定位 適用場景分析,人們希望在高性能計算任務中充分利用硬件資源,尤其是在進行深度學習模型訓練時,雙顯卡的配

性能需求 , aigc , 深度學習 , CUDA

mob64ca12dc88a3 - idea中的copilot插件應用實踐

在當前的軟件開發環境中,IDEA中的Copilot插件為程序員提供了強大的智能輔助編程能力,極大地提升了開發效率與代碼質量。本文將深入探討在IDEA中應用Copilot插件的實踐過程,包括從業務背景、演進歷程到架構設計、性能攻堅等多個方面的詳細記錄。 背景定位 隨着軟件開發的快速發展,程序員面臨着越來越多的複雜性,早已不再是單一的編碼任務。開發者需要快速適應不斷變化的需求和技術,

架構設計 , aigc , 開發者 , ci

mob64ca12f062df - ollama 限制大模型使用gpu

ollama 限制大模型使用gpu 在我最近的項目中,我遇到了一個關於“ollama”限制大模型使用 GPU 的問題。這對於任何需要高性能計算資源的深度學習應用來説,都是一個棘手的障礙。本文將詳細記錄解決這一問題的過程,從背景描述到技術原理,再到架構解析和代碼分析,力求清晰呈現整個解決思路。 背景描述 首先,讓我們瞭解一下該問題的背景——為何會出現“ollama”限制大模型使

aigc , Processing , ci , Python

mob64ca12dedda8 - ollama 金融量化模型

ollama金融量化模型是一個用於金融科技領域的強大工具,它結合了深度學習與量化分析,為投資決策提供了有效支持。在這篇文章中,我們將詳細討論構建和部署ollama金融量化模型的整個過程,包括環境預檢、部署架構、安裝過程、依賴管理、配置調優和版本管理等方面。 環境預檢 系統要求 組成部分 要求

依賴管理 , aigc , 回滾 , 版本管理

mob64ca12da726f - langchain mysql fastgpt

在本文中,我們將探討如何利用 LangChain 和 FastGPT 來與 MySQL 進行高效的數據交互和處理,展示出集成的整個過程。此外,我們會涵蓋性能優化及生態擴展的相關內容,幫助大家更好地整合這一技術棧,實現數據處理的高效性與靈活性。 環境準備 在開始之前,我們需要確保所有技術棧之間能夠完美兼容。以下是我們將使用的軟件及其對應版本: 技術

數據 , MySQL , aigc

mob64ca12ebf2cc - aigc 免費

在當前 IT 生態系統中,很多企業和開發者都在探索如何更好地運用人工智能生成內容(AIGC),同時又不試圖打破成本的界限。在面對“aigc 免費”的挑戰時,必須建立一個全面的技術框架,以保證數據安全性和可用性。以下是解決“aigc 免費”問題的記錄,涵蓋備份策略、恢復流程、災難場景、工具鏈集成、日誌分析和遷移方案等關鍵要素。 備份策略 為了有效地應對數據丟失和其他潛在問題,必須制

日誌分析 , 數據管理 , 數據恢復 , aigc

網易雲信IM - 領跑招採數字化!招採會議組件,以合規與效率重構行業標準

在國家加快建設全國統一大市場、推廣遠程異地評標的政策導向下,招採行業正迎來數字化轉型的關鍵拐點。遠程異地評標、在線開標、多方會商等場景已從 “可選” 變為 “必選”,但招採平台廠商普遍面臨三大核心痛點:音視頻技術研發門檻高、系統集成成本高昂、政策適配響應滯後。作為深耕音視頻通信領域十餘年的頭部企業,網易雲信依託億級用户服務經驗與深厚技術沉澱,重磅推出業界首個全面遵循《遠程異地評標

音視頻 , 會議組件 , aigc , bard , 招採 , 解決方案 , 遠程異地評標

mob649e815574e6 - copilot用户切換

在使用Copilot的過程中,我遇到了一個棘手的“用户切換”問題。這個問題讓我的工作效率受到了嚴重影響,導致我在項目開發中反覆遭遇類似的困擾。因此,我決定記錄下這個問題的詳細過程,以便未來能夠更好地解決。以下是我對這一問題的分析與解決過程。 問題背景 在我的日常開發中,經常需要多次切換不同的用户身份以進行權限測試。比如,我在一次大型應用的開發中,需要切換至管理員、普通用户及訪客用

User , System , aigc , 解決方案

mob649e816138f5 - diffusion模型 gpu利用率低

在近期的項目中,我們觀察到“diffusion模型 GPU 利用率低”的問題。這直接影響了模型的推理速度和整體性能,必須通過深度分析和優化來解決這一問題。以下是我們針對這一問題的詳細記錄和解決方案。 用户原始需求 我們的用户希望能夠提升 diffusion 模型在 GPU 上的運行效率,以加速圖像生成和處理的速度,同時也期望能夠優化資源消耗。 演進

高負載 , aigc , 應用場景 , 解決方案

mob64ca12e51ecb - copilot移動到vscode左邊

在使用 Visual Studio Code 的過程中,開發者常常需要根據個人習慣來調整界面,像“copilot移動到vscode左邊”這樣的需求便是其中之一。要實現這一功能,我們需要深入分析適用場景、核心性能指標、特性拆解及實戰對比,同時制定合理的選型指南與生態擴展方案。 背景定位 在現代開發環境中,IDE 的用户體驗越來越重要,而功能性和靈活性是最關鍵的維度。對於許多開發者來

code , aigc , 開發者 , Visual

yzy121403725 - gitlab+kubeflow+minio/oss對象存儲搭建MLOps

核心思路 我們將利用: • GitLab:作為代碼倉庫、CI/CD 流水線的編排者和觸發器。它負責監控代碼變更、運行自動化測試、構建鏡像並與 Kubeflow 交互。 • Kubeflow:作為運行在 Kubernetes 上的機器學習專用平台。它負責執行復雜的模型訓練(通過 Pipelines)和模型部署(通過 Serving)任務。 整個 MLOps

gitlab+kubeflow , MLOps , aigc , llama

mb68738fa1c4e31 - TRAE SOLO 3.0:從氛圍編程到精準編程的演進與實戰策略?

🎯 TRAE SOLO 3.0:從氛圍編程到精準編程的演進與實戰策略 一、TRAE SOLO 的版本迭代與架構升級 TRAE SOLO 工具歷經了多次迭代,旨在實現更精細化的控制和更高效的編程效果。 版本歷程: 從 2025 年 3 月的 1.0 版本,到 8 月的 2.0 版本,最終演進至 11 月的 3.0 版本。

商業價值 , 開發過程 , AI寫作 , aigc , 開發者