本週為第二課的第三週內容,你會發現這周的題目很長,實際上,作為第二課的最後一週內容,這一週是對基礎部分的最後補充。 在整個第一課和第二課部分,我們會了解到最基本的全連接神經網絡的基本結構和一個完整的模型訓練,驗證的各個部分。 之後幾課就會進行更多的實踐和進階內容介紹,從“通用”走向“特化”。
1.邏輯迴歸相比線性迴歸,有何異同? 區別: 線性迴歸假設響應變量服從正態分佈,邏輯迴歸假設響應變量服從伯努利分佈 線性迴歸優化的目標函數是均方差(最小二乘法),而邏輯迴歸優化的是似然函數(交叉熵) 線性迴歸要求自變量與因變量呈線性關係,而邏輯迴歸研究的是因變量取值的概率與自變量的概率 邏輯迴歸處理的是分類問