收藏 / 列表

天潤融通科技 - 天潤融通ZENAVA上崗3C家電售後,90%的報修無需人工處理

在競爭日趨激烈的家電行業,售後服務已成為影響消費者忠誠度和品牌口碑的關鍵戰場。 過去,面對一台壞掉的空調、洗衣機,消費者要撥打售後熱線,重複描述問題、等待人工響應、排隊建單、安排維修……流程複雜、響應慢、體驗差,品牌好感度就這樣一點點流失。 而現在,這一切正被AI徹底改寫。 在大量真實客户的服務場景中,天潤融通推出的對話式AI產品ZENAVA,已經將90%以上的

人工智能 , 深度學習

fangpin - 從 0 搭建 LLM 不再難!這個 PyTorch 項目幫你吃透大模型底層邏輯

如果你曾想深入理解大語言模型(LLM)的 “五臟六腑”,卻被框架封裝的黑盒接口、複雜的源碼結構勸退;如果你希望親手實現 Transformer 的每一個組件,而非單純調用transformers庫 —— 那麼今天推薦的這個開源項目,絕對能成為你的 LLM 學習 “腳手架”。 它就是 GitHub 上的 llm-from-scratch(項目地址),一個基於 PyTorch、專為教育設

github , 自定義 , 人工智能 , 深度學習 , 開發者

IvorySQL - 初學者指南 | PostgreSQL中的加密機制如何運作?

在這篇文章中,我們將介紹可用於加密和解密PostgreSQL數據庫中數據的不同方法。擁有一些 Linux 和 PostgreSQL 經驗是必要的,但擁有加密經驗並不是必需的,有經驗當然更好。本文是使用 Ubuntu 23.04上運行的 PostgreSQL16編寫的。首先,我將介紹加密的一些動機及其對數據安全的重要性,然後查看 PostgreSQL為實現加密所提供的函數的子集。 1 背景 雖然我們

數據庫鎖 , oracle , 加密算法 , 加密 , postgresql

HuiZhu - 每週8小時耗在會議上,但73%的會議紀要根本沒人看

數據顯示,職場人平均每週花費8小時在各類會議上,但調研發現:73%的會議紀要在發出後根本沒人仔細讀,92%的行動項沒有被有效追蹤。 更尷尬的是,38%的職場人承認自己"從不寫會議紀要",原因不是懶,而是不知道該怎麼記錄才有用。 這就是會議紀要的真實現狀:會開了,時間花了,但價值沒沉澱下來。 會議紀要為什麼淪為"形式主義"? 真正的問題不是寫不寫,而是寫了沒人用。我見過太多這樣的紀要: 會議紀要 -

generative-ai , 教程 , chatgpt , 人工智能 , prompt

PoloAPI - 谷歌正式推出 Gemini 2.5 系列模型,使 AI 推理性能提升30%。

谷歌於2025年6月正式推出‌Gemini 2.5系列模型‌,核心聚焦推理效率與多模態能力升級,具體解讀如下: 🚀 ‌一、三大模型定位與技術亮點‌ ‌Gemini 2.5 Pro‌ ‌角色定位‌:主攻複雜推理與多模態分析(“思考型模型”),在數學、編碼任務中刷新LMArena榜單記錄。 ‌上下文能力‌:支持100萬token輸入(計劃擴展至200萬),可解析代碼庫、大型數據集及混合媒

llm , 算法 , google , 人工智能 , 深度學習

一點人工一點智能 - 書籍-《優化技術第二卷:離散與函數優化》

書籍:Optimization Techniques II:Discrete and Functional Optimization 作者:Max CERF 出版:EDP Sciences​​ 編輯:陳萍萍的公主@一點人工一點智能 鏈接:書籍下載-《優化技術第二卷:離散與函數優化》 01 書籍介紹 這套分為兩卷的書籍概述了連續、離散和函數優化技術。本卷專注於離散優化

函數 , 離散數學

Aloudata大應科技 - Aloudata Agent 重磅功能發佈:“用户編排思路、AI 精準執行、可沉澱複用”的模塊化分析報告

自今年年初產品雛形推出以來, Aloudata Agent 保持着快速迭代,功能演進路徑清晰而堅定: 三階能力躍遷:8 月,Aloudata Agent 公開體驗版正式上線,形成了「AI 問數+智能歸因+深度報告」端到端智能分析閉環,結合“場景助手”構建了一個真正面向業務、服務於決策的分析智能體。 洞察深化:9 月,Aloudata Agent 實現了基於指標語義層的智能歸因分析能力升級,歸

chat , agent , 數據可視化 , 數據分析

全棧技術開發者 - 什麼是「多模態協同決策」?它與多傳感器融合的關係是什麼?知識蒸餾和跨模態蒸餾有什麼關係?不同模態之間的信息衝突應如何解決?

在過去的十餘年中,智能交通與自動駕駛技術的發展被普遍視為人工智能落地應用最具代表性與最具挑戰性的領域之一。人們對自動駕駛的期待不僅僅是“解放雙手”,更是寄希望於其能夠顯著提升道路利用效率,並最後推動社會出行方式的根本變革。然而,當我們深入考察現有的自動駕駛方案時,一個不容迴避的現實逐漸顯現出來:單車智能正在觸碰其發展的瓶頸。 自動駕駛的決策過程高度依賴感知,而感知本質上是車

自動駕駛 , 人工智能 , 深度學習 , 車聯網 , 模態