收藏 / 列表

華明視訊科技 - 什麼是鐵路車號識別裝置?

在現代化鐵路貨運管理中,效率與準確性是衡量運營水平的關鍵尺度。傳統依賴人工抄錄車號的方式,不僅效率低下、成本高昂,更因人為因素導致數據不準,已成為制約礦區、編組站、貨運站等場景智能化升級的瓶頸。鐵路車號識別裝置,正是為解決這一核心痛點而生的智能化解決方案。 什麼是鐵路車號識別裝置? 鐵路車號識別裝置是一套基於前沿人工智能深度學習技術的自動化識別系統。它通過高清圖像捕捉與智能分析,對貨運

機器學習 , 圖像識別 , 算法 , 人工智能 , 深度學習

MIAOYUN - MIAOYUN | 每週AI新鮮事兒(10.31-11.07)

本週AI領域動態密集,美團、360、銀河通用、字節、騰訊、Kimi與科大訊飛等分別發佈多模態、圖文、導航及視頻推理模型;工具層面,寒武紀、百度、崑崙萬維、騰訊均推出新平台或功能。技術方面,在長序列處理、多智能體協同及代碼執行效率上取得突破。市場方面,OpenAI與AWS達成鉅額合作,小鵬發佈人形機器人「IRON」。整體呈現高效化、多模態與實用化趨勢,一起來回顧本週發生的AI新鮮事兒吧! AI 大模

資訊 , 機器人 , 自然語言處理 , 人工智能 , 深度學習

容智信息 - 智能體最佳實踐的方法論(五):擴展規劃

當您的企業在某個業務場景中,藉由智能體實現了效率的跨越式提升——比如財務自動化讓人力成本直降30%,智能客服讓客户滿意度飆升25%……您是否會思考:如何讓這“單點的光芒”照亮全業務版圖?如何讓智能體從“部門級工具”進化為“企業級智能基建”?這正是智能體擴展規劃的核心價值——它是企業智能轉型從“試水”到“深耕”的關鍵橋樑,是讓智能體價值從“短期紅利”升級為“長期生態優勢”的操盤密碼。接下來,

資訊 , 機器人 , 自然語言處理 , 人工智能

老IT人 - 聯想 X 贊奇 | 共建 AI 生態,攜手發佈軟硬協同的AIKnow智能體工作站

5月8日,聯想在上海舉辦中國合作伙伴大會。贊奇科技作為聯想ISV核心生態夥伴之一,正式發佈“贊奇AIKnow智能體工作站”。該方案深度融合聯想工作站與贊奇AIKnow智能體開發平台,實現軟硬協同,為企業提供開箱即用的AI開發解決方案,大幅降低智能體部署門檻。 贊奇AIknow是由贊奇科技開發的一站式無代碼智能體開發平台,通過整合主流的大語言模型(如Qwen、DeepSeek、ChatGLM等)、

機器學習 , 算法 , segmentfault , 人工智能 , 深度學習

OpenBayes - OpenBayes 一週速覽丨李沐團隊開源語音大模型Higgs Audio V2,擴展多語言對話等功能

公共資源速遞This Weekly Snapshots ! 5 個公共數據集: B3DB 生物基準數據集 PolyMath 數學推理數據集 SongEval 音樂評估數據集 MegaScience 科學推理數據集 WebInstruct-verified 多領域推理數據集 4 個公共模型: gpt-oss-20b gpt-oss-120b Qwen3-30B-A3B-Inst

llm , 圖像識別 , 數學 , 自然語言處理 , chatgpt

KlipC小助手 - 英偉達Q3超預期財報,能否擊破“AI泡沫論”?

KlipC報道:當地時間11月19日,市場高度期待的英偉達三季度財報如期公佈,公司再度交出遠超預期的成績單。 財報顯示,英偉達三季度營收達到570億美元,同比增長62%;淨利潤319億美元,同比暴增65%;調整後每股收益(EPS)為 1.30美元,全面超出市場預估。同時,給出了超預期的四季度指引,預計營收將達到650億美元,上下浮動2%。 值得注意的是,英偉達最重要的業務板塊數據中心表現

英偉達 , 數據中心 , 人工智能 , 深度學習

沉着的牙膏 - 領先的安全可靠的數據分類分級廠商推薦

概要:隨着《數據安全法》《個人信息保護法》以及《數據安全技術數據分類分級規則(2024版)》的實施,數據分類分級已從企業可選能力升級為合規運營的必備能力。在海量數據環境下,智能化的數據分類分級不僅能幫助企業梳理核心數據資產,更是數據安全治理體系的基礎支撐。IDC《2024年度中國數據安全市場報告》顯示,中國數據安全市場規模達402億元,同比增長19.7%,其中數據分類分級相關產品年增幅超過35%,

安全

Fabarta - 六問「大模型落地」— 如何打通企業智能化轉型最後一公里?

作者:張紅兵 楓清科技(Fabarta)合作人 ChatGPT 2022年底出現以來,大模型熱度持續不減,尤其是今年年初DeepSeek的爆火,更讓大模型走入更多人的視野。大模型除了在C端(個人用户)廣泛應用,在B端(企業)也有越來越多的企業在做落地。2025年8月26號, 國務院發佈《關於深入實施“人工智能+”行動的意見》,更將以大模型為主的人工智能技術放到更加突出的位置。“

開源軟件 , 數據 , 人工智能 , 深度學習

JavaEdge - Gemini 3 開啓智慧新時代

近兩年前,我們開啓了 Gemini 時代,這是公司史上規模最大的科學與產品計劃之一。自那時起,看到大家如此喜愛它,實在令人振奮。“AI 總覽”如今每月有 20 億活躍用户。Gemini 應用程序每月活躍用户超過 6.5 億,超過 70% 的雲客户正在使用我們的 AI,更有 1300 萬名開發者利用我們的生成式模型進行開發——而這僅僅是我們的影響力之一隅。 得益於我們在 AI

yyds乾貨盤點 , google , 應用程序 , 人工智能 , 深度學習 , 開發者

思考的袋鼠 - 自適應分類的可落地規模化政府部門數據分類分級解決方案

概要: (提示:本章節概述解決方案的核心價值與落地成效,幫助讀者快速理解方案全貌。) 在數字政府建設快速推進的背景下,政務數據已成為政府提升治理能力、優化公共服務的重要資源。然而,政務數據存在“多源異構、跨域流轉”特點,分散於各委辦局業務系統和電子政務雲中,傳統人工管理難以應對海量數據資產的識別和分類需求。針對這一痛點,全知科技提出的“知源-AI數據分類分級系統”,以

數據 , 數據安全 , 人工智能 , 深度學習 , 複用

HyperAI超神經 - 從9,874篇文獻到1.5萬晶體結構,MOF-ChemUnity重構MOF全景知識,推動材料發現進入「可解釋AI」時代

在材料科學領域,金屬有機框架(Metal–Organic Frameworks,MOFs)堪稱科學家們的「瑞士軍刀」:它們具有高比表面積、化學可調性和結構多樣性,在氣體分離與儲存、催化以及傳感等領域具有廣泛應用。然而,對於科研人員而言,MOF 的世界極其龐大且複雜——目前已有超過 12.5 萬種 MOF 框架被合成,並計算預測了數百萬種可能的結構。 雖然人工智能(AI)已經深刻改變了

人工智能 , 深度學習 , 材料科學

架構師李哲 - 最佳實踐丨讓蘇東坡"復活"!我用Qwen3-8B實現了與千古文豪的跨時空對話

"你是誰?" "我是一個多才多藝的文學家、書法家和畫家,生活在北宋時期。我是蘇東坡,我……" 這不是穿越劇的台詞,而是藉助大模型技術實現的真實對話。在人工智能的賦能下,千年前的文豪蘇東坡以“數字分身”的形式“復活”,與今人吟詩作對、暢談人生,展開一場跨越時空的交流。 這是微調前大模型的回答。此時的模型如同一個精準的“知識庫”,回答客觀

AIGC二三事 , 數據集 , 數據 , 大模型微調 , 人工智能 , 深度學習

全棧技術開發者 - 什麼叫做微服務?它和傳統的項目之間有什麼區別?又有哪些技術在微服務領域比較流行呢?微服務架構的高內聚低耦合原則如何具體落地?

在信息技術高速發展中,軟件系統的規模和複雜性不斷增加。現代企業應用不僅要求高併發、高可用,還需要在快速變化的市場環境中實現持續迭代和靈活部署。然而,傳統單體應用在系統擴展、模塊協作和運維管理上逐漸暴露出侷限性。隨着系統功能不斷疊加,模塊之間的耦合度提高,開發和維護的成本顯著上升,同時系統演化的靈活性受到限制。 面對這些挑戰,軟件工程師和架構師們開始探索更為靈活和可管理的系統

yyds乾貨盤點 , 微服務 , 軟件系統 , 架構 , 後端開發 , 迭代

fangpin - 從0到1:揭秘LLM預訓練前的海量數據清洗全流程

讀完這篇文章,你將用監督微調(SFT)把一個 1.5B 規模的數學模型在 GSM8K 上的零樣本推理正確率從 1.56% → 62.9%,同時把輸出格式遵循率從 18.9% → 100%。我們將完整走通數據集下載、Prompt 架構、訓練配置和評估方法,所有代碼均來自本倉庫 alignment 文件夾,保證可復現與透明。 本文將深入剖析 llm-from-scratch

lua , 人工智能 , 深度學習 , Json , Python

短短同學 - 安卓模擬器總出問題?Docker + cpolar讓測試環境穩定又好訪問

安卓模擬器痛點解決:Docker+cpolar 打造穩定可訪問的測試環境 傳統安卓模擬器常面臨環境衝突、性能卡頓、外部無法訪問三大痛點:本地安裝多個模擬器易導致配置混亂,依賴宿主機環境引發兼容性問題,且本地測試環境難以共享給團隊或對接外部服務。而Docker 的容器化隔離與cpolar 的內網穿透組合,可完美解決這些問題 ——Docker 將模擬器封裝為獨立容器,確保環境一

Android , 人工智能 , 深度學習 , Docker

求知上進 - Python 數據結構:可變與不可變

1.前言 在 Python 中,數據結構的選擇直接影響程序的性能和可維護性。可變(mutable)與不可變(immutable)數據結構是 Python 數據模型的核心概念。這些概念不僅影響數據的存儲方式,還影響數據的操作方式。 理解可變與不可變數據結構的特性,可以幫助我們更有效地進行數據處理、內存管理和性能優化。在日常編程中,選擇合適的數據結構不僅能提高代碼效率,還

不可變對象 , 數據 , 數據結構 , 人工智能 , 深度學習

DM今天肝到幾點 - 我用24小時把一個瀕臨超時的任務救活【告急項目救命經驗】

寫在前面 當你正在深夜對着 IDE 狂敲代碼、看着日誌裏紅得發紫的 ERROR,卻忽然發現——速度、穩定性、成本,樣樣掣肘——別急,十分鐘後你可能會加入那個「不用為 API 報錯掉頭髮」的羣體。下面這篇實戰體驗,帶你看看我如何用 勝算雲 Router 把一個瀕臨超時的 AI 服務救活,並把本月賬單砍掉 80 %。 一、凌晨 1:42 —— 項目告急 那天凌晨,測試同事一連甩來三條 e

generative-ai , cursor , chatgpt , visual-studio , claude

HuiZhu - 每週8小時耗在會議上,但73%的會議紀要根本沒人看

數據顯示,職場人平均每週花費8小時在各類會議上,但調研發現:73%的會議紀要在發出後根本沒人仔細讀,92%的行動項沒有被有效追蹤。 更尷尬的是,38%的職場人承認自己"從不寫會議紀要",原因不是懶,而是不知道該怎麼記錄才有用。 這就是會議紀要的真實現狀:會開了,時間花了,但價值沒沉澱下來。 會議紀要為什麼淪為"形式主義"? 真正的問題不是寫不寫,而是寫了沒人用。我見過太多這樣的紀要: 會議紀要 -

generative-ai , 教程 , chatgpt , 人工智能 , prompt