收藏 / 列表

u_15214399 - 華為開發者空間,基於倉頡與DeepSeek的MCP智能膳食助手

本案例由開發者:給無眠點壓力提供 最新案例動態,請查閲《【案例共創】華為開發者空間,基於倉頡與DeepSeek的MCP智能膳食助手》。小夥伴快來領取華為開發者空間進行實操吧 一、概述 1. 案例介紹 MCP,全稱Model Context Protocol,中文叫“模型上下文協議”。你可以把它想象成AI的“USB 接口” --讓不同的AI模型、工具和應用程

API , 人工智能 , 深度學習 , 開發者 , Json

軟件求生 - 面試官笑了:終於有人能把 Tomcat 的 Container 講明白了!

大家好,我是小米,一個在代碼裏泡了九年的程序員。前幾天去面試一家互聯網公司,面試官笑眯眯地問我:“你瞭解 Tomcat 的 Container 架構嗎?” 我心想,這問題挺常見的,屬於那種“問不深就考概念、問深了就勸退”的經典類型。於是我開始講——沒想到,這一講,就聊了快半個小時。 今天就把我當時的回答完整覆盤給你聽,保證聽完後,你不再怕面試官問這個問題。

yyds乾貨盤點 , 主機名 , 加載 , 後端開發 , JAVA , Web

曾經愛過的烤麪包 - AI重塑世界?600家企業亮出底牌,背後暗藏這些機遇...

互聯網之光博覽會現場,600餘家企業鋪開一幅AI科技全景圖,而你,是否已經準備好握住這把改變未來的鑰匙? 世界互聯網大會烏鎮峯會近日落下帷幕,但科技的餘温未散。在“互聯網之光”博覽會上,40餘個大模型、30餘個智能體、20多項具身智能機器人同台競技,勾勒出AI技術應用的廣闊邊界。 從算力互聯互通平台的政策支持,到夸克AI眼鏡與智能體“桐小烏”結合的沉浸式服務,再到小鵬IRON機器人的全

人工智能

商湯萬象開發者 - LazyLLM教程 | 第14講:實戰:構建一個支持複雜學術論文問答的RAG系統

在前面的課程中,我們學習了 RAG 相關的知識,以及如何自定義 Reader 組件和在 RAG 任務中處理圖片和表格數據。本節內容將在此基礎上,利用前面學到的知識,搭建一個基於論文的問答系統。 在信息爆炸的時代,科研論文的數量激增,研究人員在查閲文獻時面臨諸多挑戰。論文內容專業性強、邏輯複雜,傳統的關鍵詞檢索方式難以精準提取核心信息,導致獲取有效內容的成本較高。 為了解決這一問題,RAG技術被廣泛

論文 , 教程 , 知識 , 系統架構 , 人工智能

Smartbi - 對話思邁特CEO姚詩成:存量時代 BI 不只拼產品,客户真正要的是這兩種核心價值

​​​​​​​ChatBI是解藥還是新泡沫? @松果財經 原創作者|在輝 2025年春節,DeepSeek的爆火讓產業圈迎來一波全民狂歡。很多行業或主動或被動地被AI影響,拿到了大量商機,銷售電話被打爆。 BI是其中一個典型。這個曾經專注於數據分析的行業,和AI有着天然的“親近感”。 思邁特CEO姚詩成告訴松果財經,當時那種氛圍中,不少客户涌入後台,紛紛表示今年預算重點在AI:“很多時候你過

數字化轉型 , bi , 人工智能

DashVector - 如何通過Python SDK在Collection中分組檢索Doc

本文介紹如何通過Python SDK在Collection中按分組進行相似性檢索。 前提條件 已創建Cluster 已獲得API-KEY 已安裝最新版SDK 接口定義 Python示例: Collection.query_group_by( self, vector: Optional[Union[List[Union[int, float]], np.n

ai開發 , 數據庫 , 人工智能

葡萄城技術團隊 - 解析Html Canvas的卓越性能與高效渲染策略

一、什麼是Canvas 想必學習前端的同學們對Canvas 都不陌生,它是 HTML5 新增的“畫布”元素,可以使用JavaScript來繪製圖形。 Canvas元素是在HTML5中新增的標籤用於在網頁實時生成圖像,並且可以操作圖像內容,基本上它是一個可以用JavaScript操作的位圖(bitmap)。Canvas 由一個可繪製區域HTML代碼中的屬性定義決定高度和寬度。JavaScript代碼

canvas

華明視訊科技 - 什麼是鐵路車號識別裝置?

在現代化鐵路貨運管理中,效率與準確性是衡量運營水平的關鍵尺度。傳統依賴人工抄錄車號的方式,不僅效率低下、成本高昂,更因人為因素導致數據不準,已成為制約礦區、編組站、貨運站等場景智能化升級的瓶頸。鐵路車號識別裝置,正是為解決這一核心痛點而生的智能化解決方案。 什麼是鐵路車號識別裝置? 鐵路車號識別裝置是一套基於前沿人工智能深度學習技術的自動化識別系統。它通過高清圖像捕捉與智能分析,對貨運

機器學習 , 圖像識別 , 算法 , 人工智能 , 深度學習

MIAOYUN - MIAOYUN | 每週AI新鮮事兒(10.24-10.31)

本週AI領域迎來密集更新,視頻生成為創新焦點,字節、MiniMax等發佈的模型實現了長視頻、多鏡頭與效率突破;多模態、3D場景與智能體平台(如華為WorldGrow、智源Emu3.5、360 SEAF)取得顯著進展;同時,ChatGPT在心理安全、OpenAI在開源安全模型以及PayPal與OpenAI的生態合作上也有關鍵動作,一起來回顧本週發生的AI新鮮事兒吧! AI 大模型 中國科大與字節跳動

機器學習 , 算法 , 自然語言處理 , 人工智能 , 深度學習

俞凡 - FastAPI 項目架構指南

本文介紹了在 Python 項目中使用 FastAPI 構建產品的代碼架構設計模式,通過良好的代碼架構,可以清晰的組織代碼功能,有助於開發功能良好的產品。原文:FastAPI Architecture Guide: Build Scalable and Secure Systems with This Production-Ready Template 在生產環境中運行這個架構之後,可以自

程序員

王中陽講編程 - Python 的 PyPy 能追上 Go 的性能嗎?

在我們選擇用哪種編程語言進行後端開發的時候,Python 和 Go 似乎代表了兩種極端: Python 以人生苦短我用Python的開發效率聞名,卻經常因性能被調侃為慢如龜速; Go 則以編譯即部署的輕量和高併發性能成為雲原生時代的寵兒,卻因語法簡陋被吐槽開發像搬磚。 而 PyPy 的出現,像給 Python 注射了一劑強心針,這個基於 JIT(即時編譯)的 Python 解釋器,宣稱能讓 Pyt

go , 後端 , Python

沉着的牙膏 - AI驅動·全鏈路監測·精確防護:構建新一代政務數據安全平台

一、概要 隨着政務數字化轉型的加速,政務數據安全面臨着前所未有的挑戰。數據安全不僅關乎公眾的隱私和權益,更是確保政務服務高效運行的基礎。為了更好地應對數據安全風險,本方案提出了一種基於全知科技的政務數據安全監測平台,該平台通過AI驅動、全鏈路監測和精準識別的技術特性,實現了對政務數據的全生命週期安全管控。平台在無干擾政務服務的同時,精準識別各種潛在的風險,從而有效地保障了數據安全與合規要求的

深度學習

CodeSheep - Jetbrains正式官宣免費,太炸裂了!!

提到 Jetbrains,相信搞開發的同學應該都不陌生。 眾所周知,該公司盛產各種編程IDE和開發工具。 2000年才成立,到現在卻已經發布了超30款世界頂級的編程軟件,同時也收穫了來自全球範圍內開發者和用户的青睞。 而就在不久前,Jetbrains 又放出了一個爆炸式的消息,那就是: Jetbrains 正式官宣: WebStorm 和 Rider 這兩款強大的IDE從現在開始對非商業用途全

ecmascript-6 , c# , typescript , 前端 , Javascript

DM今天肝到幾點 - 7.16 勝算 AI 資訊日報:DeepMind 自信悖論、LG 混合模型登場、Astra AI 垂直突圍、瑞士千語開源

DeepMind 披露 LLM 的“自信悖論” 最新論文指出,LLM 在多輪追問或遭遇矛盾信息時,往往一面頑固堅持錯誤答案,另一面又輕易放棄已驗證的正確結論,呈現“過度自信 + 過度懷疑”的雙重失衡。(X (formerly Twitter), arXiv) 勝算短評:這相當於把“漂移”和“幻覺”結合成一個新級別風險:即便提示工程再精細,也可能在深層對話中被拖入邏輯黑洞。

chatgpt , openai , 人工智能 , visual-studio , claude

vivo互聯網技術 - 百萬級羣聊的設計實踐

作者:來自 vivo 互聯網服務器團隊- Cai Linfeng 本文介紹了服務端在搭建 Web 版的百萬人級別的羣聊系統時,遇到的技術挑戰和解決思路,內容包括:通信方案選型、消息存儲、消息有序性、消息可靠性、未讀數統計。 一、引言 現在IM羣聊產品多種多樣,有國民級的微信、QQ,企業級的釘釘、飛書,還有許多公司內部的IM工具,這些都是以客户端為主要載體,而且羣聊人數通常都是有限制,微信正常羣人數

im , websocket , MySQL , nosql , JAVA

Alluxio - Alluxio Enterprise AI 3.5 發佈,全面提升AI模型訓練性能

近日,Alluxio 發佈 Alluxio Enterprise AI 3.5 版本。該版本憑藉僅緩存寫入模式 ( Cache Only Write Mode )、高級緩存管理策略以及 Python 的深度集成等創新功能,大幅加速 AI 模型訓練並簡化基礎設施運維,助力企業高效處理海量數據集、優化 AI 工作負載性能。 AI 驅動的工作負載常因海量的數據管理複雜度高導致效率瓶頸以及訓練週期延長。

緩存命中率 , 機器學習 , 數據挖掘 , 緩存 , 人工智能

AMIN - Markmap,用Markdown語法輕鬆創建思維導圖,AI助力提升工作效率

Markmap介紹 首先,什麼是 Markmap? Markmap 是一個開源項目,旨在用 Markdown 語法來製作思維導圖。 它的目的是:允許你使用簡單的 Markdown 語法來快速編寫思維導圖。 值得一提的是,中文Markmap 在此基礎上進一步引入了AI技術,實現了自動生成思維導圖的功能。 用户只需輸入內容,AI就會自動將其轉化為思維導圖,這大大地提高了工作效率,省去

思維導圖 , Markdown

Momodel - 首批!18個“人工智能+高等教育”應用場景典型案例

近日,教育部發布通知,公佈了首批18個“人工智能+高等教育”應用場景典型案例—— 為深入貫徹落實國家關於開展“人工智能+”行動的戰略部署,積極推動高等教育與人工智能技術的融合發展,利用智能技術支撐人才培養模式的創新、教學方法的改革、教育治理能力的提升,教育部高等教育司組織了首批“人工智能+高等教育”典型應用場景案例的徵集和論證工作,尋找、發掘和推廣在人工智能技術應用上具有代表性、前瞻性且能

學習 , 人工智能 , 分享

六月的可樂🥤 - SSE請求多種實現方式總結

文前推薦一下👉 前端必備工具推薦網站(圖牀、API和ChatAI、智能AI簡歷、AI思維導圖神器等實用工具): 站點入口:http://luckycola.com.cn/ 什麼是SSE SSE(Server-Sent Events)是一種用於實現服務器主動向客户端推送數據的技術,也被稱為“事件流”(Event Stream)。它基於 HTTP 協議,利用了其長連接特性,在

typescript , HTML , 前端 , html5 , Javascript

京東雲開發者 - Java對象拷貝原理剖析及最佳實踐

作者:寧海翔 1 前言 對象拷貝,是我們在開發過程中,繞不開的過程,既存在於Po、Dto、Do、Vo各個表現層數據的轉換,也存在於系統交互如序列化、反序列化。 Java對象拷貝分為深拷貝和淺拷貝,目前常用的屬性拷貝工具,包括Apache的BeanUtils、Spring的BeanUtils、Cglib的BeanCopier、mapstruct都是淺拷貝。 1.1 深拷貝 深拷貝:對基本數據類型進行

編程 , spring , JAVA , apache , 對象

阿里雲開發者 - 【OpenVI—論文解讀系列】達摩院細粒度分類SoftTriple Loss ICCV高引論文深入解讀

一、背景 度量學習是一種機器學習方法,它主要用於在相似性度量的基礎上進行數據挖掘。具體來説,度量學習通過學習一種函數來度量兩個數據樣本點的相似性。這種函數稱為度量函數,它的目的是在儘可能減少度量錯誤的同時最小化相似數據樣本點之間的距離。典型的度量學習方法包括Triplet Loss、ProxyNCA、Npairs等。度量學習可以應用於許多領域,例如: 1.)圖像分類:度量學習可以用來幫助計算

函數 , 機器學習 , 數據 , 阿里雲

JavaEdge - 別隻怪客户端宕機!還有這些導致 Redis 分佈式鎖“死鎖”的原因

本文已收錄在Github,關注我,緊跟本系列專欄文章,咱們下篇再續! 🚀 魔都架構師 | 全網30W技術追隨者 🔧 大廠分佈式系統/數據中台實戰專家 🏆 主導交易系統百萬級流量調優 車聯網平台架構 🧠 AIGC應用開發先行者 | 區塊鏈落地實踐者 🌍 以技術驅動創新,我們的征途是改變世界! 👉 實戰乾貨:編程嚴選網 0 前言 除了“持有鎖的進程崩潰、未釋放鎖”這一經典

JAVA

美狐美顏SDK開放平台 - 美顏SDK性能優化實戰:GPU加速與AI人臉美型的融合開發

在過去幾年,美顏SDK的競爭已經不只是比“濾鏡有多好看”了,而是上升到實時性能、AI智能化、人臉美型精細度等多維度的體驗較量。尤其在直播、短視頻與視頻會議業務爆發後,任何輕微卡頓、延遲、鋸齒感,都會直接影響用户留存。 所以,業界逐漸達成共識: 性能,是美顏效果的底層保障;AI智能,是新一代美顏SDK的核心競爭力。 本文將結合行業經驗,分享美顏SDK在

視頻美顏sdk , 美顏api , 美狐美顏sdk , 人工智能 , 直播美顏sdk , 計算機視覺 , 在51CTO的第一篇博文 , 美顏SDK

Fabarta - Cursor可控AI編程實踐:縮短交付週期,保障產品質量

導讀AI編程工具的興起讓開發效率有了質的飛躍,但很多開發者在使用過程中會發現一個問題:AI生成的代碼往往與現有項目的技術棧、編碼規範不匹配,需要大量的手動修改,開發效率拖了後腿。如何讓AI按照我們的意圖和規範來編寫代碼?這就是"可控AI編程"要解決的核心問題。 通過Cursor可控AI編程技術,我們大幅提升了開發效率,同時確保了產品的高質量和可靠性。本文將展示這一技術如何為企業創造實際價

編程 , 人工智能 , 深度學習